Al-Wasify, R.L., Ali, M.N. and Hamed, S.R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water Sci. Technol., 76(11); 3094–3100.
https://doi.org/10.2166/wst.2017.481
APHA/AWWA/WEH (2005). Standard Methods for the Examination of Water and Wastewater, 21st Ed., American Public Health Association/ American Water Works Association/Water Environment Federation. (Washington, DC, USA)
Asses, N.,
Ayed, L.,
Hkiri, H. and Hamdi, M. (2018). Congo Red Decolorization and Detoxification by
Aspergillus niger: Removal Mechanisms and Dye Degradation Pathway. Biomed. Res. Int., https://doi.org /10.1155/2018/3049686
Bardone, E. (2012). Associazione Italiana di Ingegneria Chimica, (3rd International Conference on Industrial Biotechnology, Palermo, Italy. 27: 175-180
Bejarano, Ortiz D.I., Thalassso, F., Cuervo Lopez, F. de M. and Texier, A.C. (2013). Inhibitory effect of sulphide on the nitrifying respiratory process. J. Chem. Technol. Biotechnol., 88; 1344-1349. https://doi.org /10.1002/jetb.398
Brahmachrimayum, B., Mohanty, M.P. and Ghosh, P.K. (2019). Theoretical and practical aspects of biological sulfate reduction: A Review. Glob. Nest. J., 21(2); 222-244. https://doi.org /10.30955/gnj.002577
Carvalho, F., Prazeres, A.R. and Rivas, J. (2013). Cheese Whey Waste Water: Characterization and Treatment. Sci. Total Environ., 15; 445-446, 385-96. https://doi: 10.1016/j.scitotenv.2012.12.038
Djelal, H. and Amrane, A. (2013). Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale. J. Env. Sci., 25(9); 1906-12. https://doi:
10.1016/S1001-0742(12)60239-3
Jiang, J.,
Chan, A.,
Ali, S.,
Saha, A.,
Haushalter, K.J.,
Macrina Lam, W.,
Glasheen, M.,
Parker, J.,
Brenner, M.,
Mahon, S.B.,
Patel, H.H.,
Ambasudhan, R.,
Lipton, S.A.,
Pilz, R.B.,
Boss, G.R. (2016). Hydrogen Sulfide—Mechanisms of Toxicity and Development of an Antidote. Sci. Rep.,
https://doi.org/10.1038/srep20831
José Carlos L M, Leonardo S, Jesús MC, Paola MR, Alejandro ZC, Juan AV, Ristóbal Noé A. (2020). Solid-State Fermentation with Aspergillus niger GH1 to Enhance Polyphenolic Content and Antioxidative Activity of Castilla Rose (Purshia plicata). Plants (Basel). 9(11);1518. https://doi: 10.3390/plants9111518
Kardag, G., Koroglu, O.E., Ozkaya, B. and Cakmacki, M. (2015). A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Proc. Biochem., 50 (2); 262-271. https://
doi: 10.1016/j.procbio.2014.11.005
Lens, P. and Hullshoff Pol, P.W. (2000) Environmental Technologies to Treat Sulphur Pollution: Principles and Engineering, (IWA Publishing, London)
Liamleam, A.W. and Annachhatre, A.P. (2007). Electrical Donors for Biological Sulphate Reduction. Biotechnol. Adv., 25(5); 452-6. https://doi:
10.1016/j.biotechadv.2007.05.002
Liang, Z.,
Sun, J.,
Zhan, C.,
Wu, S.,
Zhang, L. and
Jiang, F. (2020). Effects of sulfide on mixotrophic denitrification by
Thauera-dominated denitrifying sludge
. Environ. Sci.: Water Res. Technol., 6; 1186-1195.
https://doi.org/10.1039/C9EW01014A
Mainardis M, Buttazzoni M, Goi D. (2020) Up-Flow Anaerobic Sludge Blanket (UASB) Technology for Energy Recovery: A Review on State-of-the-Art and Recent Technological Advances. Bioengineering (Basel). 7(2); 43. https://doi: 10.3390/bioengineering7020043
Mannucci, A., Munz, G., Gualtiero, G. and Lubello, C. (2014). Factors Affecting Biological Sulphate Reduction in Tannery Wastewater Treatment. Environ. Eng. Manag. J., 13(4); 1005-1012
Neculita, C.M., Zagury, G.J. and Busiere, B. (2007). Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria: Critical Review and Research Needs. J. Environ. Qual. 36(1);1-16. https://doi.org/
10.2134/jeq2006.0066
Porwal, H.J., Mane, A.V. and Velhal, S.G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge, Water Resour. Indus., 9,1-15.
https://doi.org/10.1016/j.wri.2014.11.002
Richards, O.W. (2002) Effect of calcium Carbonate on the growth and fermentation of yeast. J. Am. Chem. Soc., 47(6). https://doi.org/
10.1021/ja01683a023
Salvov, A.K. (2017). General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review. Food Technol. Biotechnol., 55(1); 14–28. https://doi.org/
10.17113/ftb.55.01.17.4520
Samal, L. and Pattnaik, A.K. (2004) Dairy Production in India - Existing Scenario and Future Prospects. Int. J. Livest. Res., 4(2); 105-113. https://doi.org/
10.5455/ijlr.20131002065611
Sankaran, S., Khanal, S.K., Jasti, N., Jin. B., Pometto III, A.L. and Van Leewen, J.H. (2010). Use of Filamentous Fungi for Wastewater Treatment and Production of High Value Fungal Byproducts: A Review. Crit Rev Environ Sci Tec., 40(5); 400-449.
https://doi.org/10.1080/10643380802278943
Schneider, I., and Topalava, Y. (2013). Microbial Structure and Functions of Biofilm During Wastewater Treatment in the Dairy Industry, Biotechnol. Biotechnol. Equip., 27(3); 3782-3786. https://doi.org/
10.5504/BBEQ.2013.0015
Shah, M.P. (2016). Industrial Wastewater Treatment: A Challenging Task in the Industrial Waste Management. Adv Recycling Waste Manag., https://doi.org/
10.4172/2475-7675.1000115
Sharma, N. and Dwivedi, A (2017) Bioremediation of Dairy Waste Water for Nitrate Reduction. World J. Pharm. Sci., 3(1); 375-384
Sharma, N. Saxena, S. Fatima, M., Iram, B., Datta, A. and Gupta, S. (2014). Microcosm Analysis of Untreated Textile Effluents by Autochthonous Bacteria. Int. J. Curr. Res. Pharm. Sci., 1(5); 15-23
Sharma, N., Chatterjee, S. and Bhatnagar, P. (2013.) An Evaluation of Physico-chemical Properties to Assess Quality of Treated Effluents from Jaipur Dairy. Int. J. Chem. Pharm. Res., 4 (4-3); 54-58
Sharma, N., Yadav, N., Bhagwani, H., Chahar, D. and Singh, B. (2018). Screening of lactic Acid Bacteria from Effluents of Jaipur City. Int. J. Waste. Resour., https://doi.org/
10.4172/2252-5211.1000332
Shete, B.S. and Shinkar, N.P. (2013). Dairy Industry Wastewater Sources, Characteristics & its Effects on Environment. Int. J. Curr. Eng. and Technol. 3; 1611-1615
Thangiah, A.S. (2019). Spectrophotometric Determination of Sulphate and Nitrate in Drinking Water at Asia-Pacific International University Campus, Muak Lek, Thailand. Rasayan J. Chem., 12 (3); 1503 – 1508.
http://dx.doi.org/10.31788/RJC.2019.1235201
Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberats, G. (2009). Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol., 100; 3713-3717
Verma, P. and Madamwar, D. (2003). Comparative Study on Transformation of Azo Dyes by White Rot Fungi. Ind. J. Biotechnol., 1; 393-396
Wawrzak, D. (2014). Microbiological Reduction of Sulphates to Sulphides used in Dairy Waste Water Treatment. Inzynieria Mineralna 14(2);109-114