Abgaze, T. A., & Sharma, P. K. (2015). Solute transport through porous media with scale-dependent dispersion and variable mass transfer coefficient. ISH Journal of Hydraulic Engineering, 21(3), 298-311.
Canuto, C., & Giudice, A. L. (2019). A multi-timestep Robin–Robin domain decomposition method for time dependent advection-diffusion problems. Applied Mathematics and Computation, 363, p.124596.
Chang, C. M., & Yeh, H. D. (2012). Investigation of solute transport in nonstationary unsaturated flow fields. Hydrology and Earth System Sciences, 16(11), 4049-4055.
Chaudhary, M., & Singh, M. K. (2020). Study of multispecies convection-dispersion transport equation with variable parameters. Journal of Hydrology, 591, p.125562.
Chaudhary, M., Thakur, C. K., & Singh, M. K. (2020). Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir. Environmental Earth Sciences, 79, 1-23.
Chen, J. S., Ni, C. F., Liang, C. P., & Chiang, C. C. (2008). Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity. Journal of Hydrology, 362(1-2), 142-149.
Crank, J. (1975). The mathematics of diffusion. Oxford. England: Clarendon.
Cvetkovic, V., Fiori, A., & Dagan, G. (2014). Solute transport in aquifers of arbitrary variability: A time‐domain random walk formulation. Water Resources Research, 50(7), 5759-5773.
Freeze, R. A., & Cherry, J. A. (1979). Groundwater, Prentice-Hall, Englewood Cliffs, N. J.
Gao, G., Zhan, H., Feng, S., Fu, B., Ma, Y., & Huang, G. (2010). A new mobile‐immobile model for reactive solute transport with scale‐dependent dispersion. Water Resources Research, 46(8).
Ghosh, N. C., & Sharma, K. D. (2006). “Groundwater models: how the science can empower the management?”, In: Groundwater Research and Management: Integrating Science into Management Decisions, (edited by B.R. Sharma, K.G. Villholth and K.D. Sharma), International Water Management Institute, Colombo, pp.115-133.
Guerrero, J. P., & Skaggs, T. H. (2010). Analytical solution for one-dimensional advection–dispersion transport equation with distance-dependent coefficients. Journal of Hydrology, 390(1-2), 57-65.
Khuzhayorov, B., Mustofoqulov, J., Ibragimov, G., Md Ali, F., & Fayziev, B. (2020). Solute transport in the element of fractured porous medium with an inhomogeneous porous block. Symmetry, 12(6), p.1028.
Kumar, A., & Yadav, R. R. (2015). One-dimensional solute transport for uniform and varying pulse type input point source through heterogeneous medium. Environmental technology, 36(4), 487-495.
Kumar, R., Chatterjee, A., Singh, M. K., & Tsai, F. T. (2022). Advances in analytical solutions for time-dependent solute transport model. Journal of Earth System Science, 131(2), p.131.
Liang, R., & Isa, Z. M. (2024). Heavy metal transport with adsorption for instantaneous and exponential attenuation of concentration. Scientific Reports, 14(1), p.537.
Mehmood, K., Ullah, S., & Kubra, K. T. (2023). Mathematical modeling of fluid flow and pollutant transport in a homogeneous porous medium in the presence of plate stacks. Heliyon, 9(3).
Rajput, S., & Singh, M. K. (2021). Off-diagonal dispersion effect with pollutant migration in groundwater system. Journal of Engineering Mechanics, 147(12), p.04021114.
Savovic, S., & Djordjevich, A. (2012). Finite difference solution of the one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media. International Journal of Heat and Mass Transfer, 55(15-16), 4291-4294.
Savovic, S. M., & Djordjevich, A. (2020). Explicit finite difference solution for contaminant transport problems with constant and oscillating boundary conditions. Thermal Science, 24(3B), 2225-2231.
Singh, M. K., Mahato, N. K., & Kumar, N. (2015). Pollutant’s horizontal dispersion along and against sinusoidally varying velocity from a pulse type point source. Acta Geophysica, 63, 214-231.
Singh, P., Yadav, S. K., & Kumar, N. (2012). One-dimensional pollutant’s advective-diffusive transport from a varying pulse-type point source through a medium of linear heterogeneity. Journal of Hydrologic Engineering, 17(9), 1047-1052.
Singh, R. K., Paul, T., Mahato, N. K., & Singh, M. K. (2023). Contaminant dispersion with axial input sources in soil media under non-linear sorption. Environmental Technology, 44(13), 1903-1915.
Suk, H. (2016). Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients. Advances in Water Resources, 94, 412-423.
Thakur, C. K., Chaudhary, M., Van Der Zee, S. E. A. T. M., & Singh, M. K. (2019). Two-dimensional solute transport with exponential initial concentration distribution and varying flow velocity. Pollution, 5(4), 721-737.
van Genuchten, M. T., & Alves, W. J. (1982). Analytical solutions of the one-dimensional convective-dispersive solute transport equation. Technical Bulletin No. 1661. United States Department of Agriculture, 151.
Wu, L., Gao, B., Tian, Y., & Muñoz-Carpena, R. (2014). Analytical and experimental analysis of solute transport in heterogeneous porous media. Journal of Environmental Science and Health, Part A, 49(3), 338-343.
Zhao, P., Zhang, X., Sun, C., Wu, J., & Wu, Y. (2017). Experimental study of conservative solute transport in heterogeneous aquifers. Environmental Earth Sciences, 76, 1-13.
Zheng, C., & Bennett, G. D. (2002). Applied contaminant transport modeling (Vol. 2, p. 353). New York: Wiley-Interscience.
Ziskind, G., Shmueli, H., & Gitis, V. (2011). An analytical solution of the convection-dispersion-reaction equation for a finite region with a pulse boundary condition. Chemical engineering journal, 167(1), 403-408.