Al Mamun, A., Prasetya, T. A. E., Dewi, I. R., & Ahmad, M. (2023). Microplastics in human food chains: Food becoming a threat to health safety. Sci. Total Environ., 858; 159834.
Al-Obaidi, A. R., Al-Anbari, R. H., & Hassan, M. S. (2021, June). Sewage sludge reuse in concrete industry: A review. IOP Conf. Ser.: Earth Environ. Sci., 779(1); 012010, https://doi.org/10.1088/1755-1315/779/1/012010
Alava, J. J., Kazmiruk, T. N., Douglas, T., Schuerholz, G., Heath, B., Flemming, S. A., ... & Drever, M. C. (2021). Occurrence and size distribution of microplastics in mudflat sediments of the Cowichan-Koksilah Estuary, Canada: A baseline for plastic particles contamination in an anthropogenic-influenced estuary. Mar. Pollut. Bull., 173; 113033, https://doi.org/10.1016/j.marpolbul.2021.113033
Amin, F., Abbas, S., Abbass, W., Salmi, A., Ahmed, A., Saeed, D., Sufian, M., & Sayed, M. M. (2022). Potential use of wastewater treatment plant sludge in fabrication of burnt clay bricks. Sustainability, 14(11); 6711.
Anand, U., Dey, S., Bontempi, E., Ducoli, S., Vethaak, A. D., Dey, A., & Federici, S. (2023). Biotechnological methods to remove microplastics: a review. Environmental Chemistry Letters, 21(3), 1787-1810.
Azoulay, D., Villa, P., Arellano, Y., Gordon, M. F., Moon, D., Miller, K. A., Thompson, K., & Kistler, A. (2019). Plastic & health: The hidden costs of a plastic planet. Geneva: CIEL.
Bayo, J., López-Castellanos, J., & Olmos, S. (2020). Abatement of microplastics from municipal effluents by two different wastewater treatment technologies. Water Pollut. XV, 1; 15–26, https://doi.org/10.2495/WP200021
Chae, Y., Kim, D., & An, Y. J. (2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. Aquat. Toxicol., 216; 105296.
Chaiwong, C., Koottatep, T., & Polprasert, C. (2021). Development of kinetic models for organic and nutrient removal in biofilm photobioreactor for treatment of domestic wastewater. Environ. Technol. Innov., 23; 101547.
Chaiwong, C., Koottatep, T., & Polprasert, C. (2021). Effects of specific wavelengths of lights on the performance of biofilm photobioreactor for treating septic tank effluent. J. Water Process Eng., 40; 101907.
Chand, R., Kohansal, K., Toor, S., Pedersen, T. H., & Vollertsen, J. (2022). Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge. J. Clean. Prod., 335; 130383, https://doi.org/10.1016/j.jclepro.2022.130383
Chia, W. Y., Tang, D. Y. Y., Khoo, K. S., Lup, A. N. K., & Chew, K. W. (2020). Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology, 4, 100065.
Chong, J. W. R., Tan, X., Khoo, K. S., Ng, H. S., Jonglertjunya, W., Yew, G. Y., & Show, P. L. (2022). Microalgae-based bioplastics: future solution towards mitigation of plastic wastes. Environmental research, 206, 112620.
Cverenkárová, K., Valachovičová, M., Mackuľak, T., Žemlička, L., & Bírošová, L. (2021). Microplastics in the food chain. Life, 11(12); 1349.
Cydzik-Kwiatkowska, A., Milojevic, N., & Jachimowicz, P. (2022). The fate of microplastic in sludge management systems. Science of the Total Environment, 848, 157466.
Da Costa, J. P., Rocha-Santos, T., & Duarte, A. C. (2020). The environmental impacts of plastics and micro-plastics use, waste and pollution: EU and national measures.
Das, S. K., Chinnappan, A., Jayathilaka, W. A. D. M., Gosh, R., Baskar, C., & Ramakrishna, S. (2021). Challenges and potential solutions for 100% recycling of medical textiles. Mater. Circ. Econ., 3; 1–12.
Dianursanti, D., Noviasari, C., Windiani, L., & Gozan, M. (2019, April). Effect of compatibilizer addition in Spirulina platensis based bioplastic production. In AIP Conference Proceedings (Vol. 2092, No. 1). AIP Publishing.
Ding, N., An, D., Yin, X., & Sun, Y. (2020). Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples. Environ. Sci. Pollut. Res., 27(13); 15878–15887, https://doi.org/10.1007/s11356-020-08127-2
Esfandiari, A., & Mowla, D. (2021). Investigation of microplastic removal from greywater by coagulation and dissolved air flotation. Process Saf. Environ. Prot., 151; 341–354, https://doi.org/10.1016/j.psep.2021.05.027
Fakkaew, K., Koottatep, T., & Polprasert, C. (2018). Faecal sludge treatment and utilization by hydrothermal carbonization. J. Environ. Manag., 216; 421–426, https://doi.org/10.1016/j.jenvman.2017.09.031
Fan, L., Mohseni, A., Schmidt, J., Evans, B., Murdoch, B., & Gao, L. (2023). Efficiency of lagoon-based municipal wastewater treatment in removing microplastics. Science of the Total Environment, 876, 162714.
Galvão, A., Aleixo, M., De Pablo, H., Lopes, C., & Raimundo, J. (2020). Microplastics in wastewater: Microfiber emissions from common household laundry. Environ. Sci. Pollut. Res., 27(21); 26643–26649, https://doi.org/10.1007/s11356-020-08765-6
Gao, N., Ning, R., & Deng, X. (2023). Feasibility, challenges, and future prospects of microalgae-based bioremediation technique for removing microplastics from wastewater. Frontiers in Bioengineering and Biotechnology, 11, 1288439.
Geyer, R., Gavigan, J., Jackson, A. M., Saccomanno, V. R., Suh, S., & Gleason, M. G. (2022). Quantity and fate of synthetic microfiber emissions from apparel washing in California and strategies for their reduction. Environ. Pollut., 298; 118835, https://doi.org/10.1016/j.envpol.2022.118835
Hu, K., Yang, Y., Zuo, J., Tian, W., Wang, Y., Duan, X., & Wang, S. (2022). Emerging microplastics in the environment: Properties, distributions, and impacts. Chemosphere, 134118, https://doi.org/10.1016/j.chemosphere.2022.134118
Jinda, K., Koottatep, T., Chaiwong, C., & Polprasert, C. (2020). Performance evaluation of novel attached-growth high rate algal pond system with additional artificial illumination for wastewater treatment and nutrient recovery. Water Sci. Technol., 82(1); 97–106.
Kamani, H., Ghayebzadeh, M., Azari, A., & Ganji, F. (2024). Characteristics of microplastics in a hospital wastewater treatment plant effluent and hazard risk assessment. Environ. Process., 11(1); 15.
Khan, D., Kumar, A., & Samadder, S. R. (2016). Impact of socioeconomic status on municipal solid waste generation rate. Waste management, 49, 15-25.
Kim, B., Lee, S. W., Jung, E. M., & Lee, E. H. (2023). Biosorption of sub-micron-sized polystyrene microplastics using bacterial biofilms. J. Hazard. Mater., 458; 131858.
Koottatep, T., Fakkaew, K., Tajai, N., Pradeep, S. V., & Polprasert, C. (2016). Sludge stabilization and energy recovery by hydrothermal carbonization process. Renew. Energy, 99; 978–985, https://doi.org/10.1016/j.renene.2016.07.068
Kwon, H. J., Hidayaturrahman, H., Peera, S. G., & Lee, T. G. (2022). Elimination of microplastics at different stages in wastewater treatment plants. Water, 14(15); 2404.
Lee, H., & Kim, Y. (2018). Treatment characteristics of microplastics at biological sewage treatment facilities in Korea. Mar. Pollut. Bull., 137; 1–8, https://doi.org/10.1016/j.marpolbul.2018.09.050
Li, C., Gan, Y., Zhang, C., He, H., Fang, J., Wang, L., ... & Liu, J. (2021). “Microplastic communities” in different environments: Differences, links, and role of diversity index in source analysis. Water Res., 188; 116574.
Liu, N., Cheng, S., Wang, X., Li, Z., Zheng, L., Lyu, Y., ... & Wu, H. (2022). Characterization of microplastics in the septic tank via laser direct infrared spectroscopy. Water Res., 119293, https://doi.org/10.1016/j.watres.2022.119293
Lotfigolsefidi, F., Davoudi, M., Sarkhosh, M., & Bonyadi, Z. (2025). Removal of microplastics by algal biomass from aqueous solutions: performance, optimization, and modeling. Scientific Reports, 15(1), 501.
Luqman, A., Nugrahapraja, H., Wahyuono, R. A., Islami, I., Haekal, M. H., Fardiansyah, Y., ... & Wibowo, A. T. (2021). Microplastic contamination in human stools, foods, and drinking water associated with Indonesian coastal population. Environments, 8(12); 138, https://doi.org/10.3390/environments8120138
Ma, M., Liu, S., Su, M., Wang, C., Ying, Z., Huo, M., ... & Yang, W. (2022). Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China. Environ. Pollut., 292; 118384, https://doi.org/10.1016/j.envpol.2021.118384
Mac Mahon, J., Knappe, J., & Gill, L. W. (2022). Sludge accumulation rates in septic tanks used as part of the non-sewered treatment of domestic wastewater in a northern maritime temperate climate. J. Environ. Manag., 304; 114199, https://doi.org/10.1016/j.jenvman.2021.114199
Mateos-Cárdenas, A., von der Geest Moroney, A., van Pelt, F. N., O’Halloran, J., & Jansen, M. A. (2022). Trophic transfer of microplastics in a model freshwater microcosm: Lack of a consumer avoidance response. Food Webs, 31; e00228, https://doi.org/10.1016/j.fooweb.2022.e00228
Maw, M. M., Boontanon, N., Aung, H. K. Z. Z., Jindal, R., Fujii, S., Visvanathan, C., & Boontanon, S. K. (2024). Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. Chemosphere, 361, 142536.
Maw, M. M., Boontanon, S. K., Jindal, R., Boontanon, N., & Fujii, S. (2022). Occurrence and removal of microplastics in activated sludge treatment systems: A case study of a wastewater treatment plant in Thailand. Eng. Access, 8(1), https://doi.org/10.14456/mijet.2022.15
Michida, Y., Chavanich, S., Chiba, S., Cordova, M. R., Cozsar Cabanas, A., Galgani, F., ... & Wang, J. (2019). Guidelines for harmonizing ocean surface microplastic monitoring methods. Version 1.1.
Mishra, S., Charan Rath, C., & Das, A. P. (2019). Marine microfiber pollution: A review on present status and future challenges. Mar. Pollut. Bull., 140; 188–197, https://doi.org/10.1016/j.marpolbul.2019.01.039
Nam, N. H., Visvanathan, C., & Jegatheesan, V. (2009). Performance evaluation of septic tanks as onsite sanitation system. Southeast Asian Water Environ., 3; 141–146.
Nguyen, M. K., Hadi, M., Lin, C., Nguyen, H. L., Thai, V. B., Hoang, H. G., ... & Tran, H. T. (2022). Microplastics in sewage sludge: distribution, toxicity, identification methods, and engineered technologies. Chemosphere, 308, 136455.
Nguyen, P. D., Tran, Q. V., Le, T. T., Nguyen, Q. H., Kieu-Le, T. C., & Strady, E. (2023). Evaluation of microplastic removal efficiency of wastewater-treatment plants in a developing country, Vietnam. Environmental Technology & Innovation, 29, 102994.
Ni, B. J., Zhu, Z. R., Li, W. H., Yan, X., Wei, W., Xu, Q., ... & Sun, J. (2020). Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature. Environmental Science & Technology Letters, 7(12), 961-967.
Oruganti, R. K., Katam, K., Show, P. L., Gadhamshetty, V., Upadhyayula, V. K. K., & Bhattacharyya, D. (2022). A comprehensive review on the use of algal-bacterial systems for wastewater treatment with emphasis on nutrient and micropollutant removal. Bioengineered, 13(4), 10412-10453.
Pashaei, R., Dzingelevičienė, R., Bradauskaitė, A., Lajevardipour, A., Mlynska-Szultka, M., Dzingelevičius, N., ... & Buszewski, B. (2022). Pharmaceutical and microplastic pollution before and during the COVID-19 pandemic in surface water, wastewater, and groundwater. Water, 14(19); 3082, https://doi.org/10.3390/w14193082
Periyasamy, A. P. (2021). Evaluation of microfiber release from jeans: The impact of different washing conditions. Environ. Sci. Pollut. Res., 28(41); 58570–58582, https://doi.org/10.1007/s11356-021-14761-1
Piskuła, P., & Astel, A. M. (2022). Microplastics occurrence in two mountainous rivers in the Lowland area—A case study of the Central Pomeranian Region, Poland. Microplastics, 1(1); 167–185.
Rahman, A., & Miller, C. D. (2017). Microalgae as a source of bioplastics. In Algal green chemistry (pp. 121-138). Elsevier.
Rathinamoorthy, R., & Balasaraswathi, S. R. (2022). Mitigation of microfibers release from disposable masks–An analysis of structural properties. Environ. Res., 214; 114106, https://doi.org/10.1016/j.envres.2022.114106
Sabathini, H. A., Windiani, L., & Gozan, M. (2018). Mechanical Physicial properties of chlorella-PVA based bioplastic with ultrasonic homogenizer. In E3S Web of Conferences (Vol. 67, p. 03046). EDP Sciences.
Sakali, A., Coello, D., Haïlaf, A., Egea-Corbacho, A., Albendín, G., Arellano, J., ... & Rodríguez-Barroso, R. (2021). A new protocol to assess the microplastics in sewage sludge. J. Water Process Eng., 44; 102344, https://doi.org/10.1016/j.jwpe.2021.102344
Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., & Liebmann, B. (2019). Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med., 171(7); 453–457, https://doi.org/10.7326/M19-0618
Simon, M., van Alst, N., & Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging. Water Res., 142; 1–9, https://doi.org/10.1016/j.watres.2018.05.019
Sol, D., Laca, A., Laca, A., & Díaz, M. (2020). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Sci. Total Environ., 740; 140016, https://doi.org/10.1016/j.scitotenv.2020.140016
Song, C., Liu, Z., Wang, C., Li, S., & Kitamura, Y. (2020). Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025. Sci. Total Environ., 723; 138146.
Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence, and removal. Water Res., 152; 21–37, https://doi.org/10.1016/j.watres.2018.12.050
Sun, Q., Li, J., Wang, C., Chen, A., You, Y., Yang, S., ... & Li, Y. (2022). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front. Environ. Sci. Eng., 16(1); 1.
Sun, Q., Ren, S. Y., & Ni, H. G. (2020). Incidence of microplastics in personal care products: An appreciable part of plastic pollution. Sci. Total Environ., 742; 140218, https://doi.org/10.1016/j.scitotenv.2020.140218
Tadsuwan, K., & Babel, S. (2021). Microplastic contamination in a conventional wastewater treatment plant in Thailand. Waste Manag. Res., 39(5); 754–761, https://doi.org/10.1177/0734242X20982055
Tadsuwan, K., & Babel, S. (2022). Microplastic abundance and removal via an ultrafiltration system coupled to a conventional municipal wastewater treatment plant in Thailand. J. Environ. Chem. Eng., 10(2); 107142, https://doi.org/10.1016/j.jece.2022.107142
Tang, N., Liu, X., & Xing, W. (2020). Microplastics in wastewater treatment plants of Wuhan, Central China: Abundance, removal, and potential source in household wastewater. Sci. Total Environ., 745; 141026, https://doi.org/10.1016/j.scitotenv.2020.141026
Trang, T. T. T., Rañola Jr, R. F., & Van Song, N. (2019). Factors Affecting the Households’ Willingness-to-Pay for Wastewater Treatment in Agro-Food Processing Craft Villages, Nhue-Day River Basin, Vietnam. Journal of Environmental Protection, 10(09), 1119.
Tsochatzis, E. D., Alberto Lopes, J., Holland, M. V., Reniero, F., Emons, H., & Guillou, C. (2019). Isolation, characterization and structural elucidation of polybutylene terephthalate cyclic oligomers and purity assessment using a 1H qNMR method. Polymers, 11(3); 464, https://doi.org/10.3390/polym11030464
Vibhatabandhu, P., & Srithongouthai, S. (2022). Abundance and characteristics of microplastics contaminating the surface water of the inner Gulf of Thailand. Water Air Soil Pollut., 233(2); 1–14, https://doi.org/10.1007/s11270-022-05531-x
Wang, F., & Chen, H. H. (2021, May). Analysis of the Social and Economic Factors of Wastewater Discharge in China. In 7th International Conference on Humanities and Social Science Research (ICHSSR 2021) (pp. 811-814). Atlantis Press.
Wang, F., Wang, B., Duan, L., Zhang, Y., Zhou, Y., Sui, Q., ... & Yu, G. (2020). Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China. Water Res., 182; 115956, https://doi.org/10.1016/j.watres.2020.115956
Wang, Q., Hernández-Crespo, C., Santoni, M., Van Hulle, S., & Rousseau, D. P. (2020). Horizontal subsurface flow constructed wetlands as tertiary treatment: can they be an efficient barrier for microplastics pollution?. Science of the Total Environment, 721, 137785.
Xu, Q., Gao, Y., Xu, L., Shi, W., Wang, F., LeBlanc, G. A., ... & Lei, K. (2020). Investigation of the microplastics profile in sludge from China’s largest water reclamation plant using a feasible isolation device. J. Hazard. Mater., 388; 122067, https://doi.org/10.1016/j.jhazmat.2020.122067
Yan, Z., Liu, Y., Zhang, T., Zhang, F., Ren, H., & Zhang, Y. (2021). Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status. Environ. Sci. Technol., 56(1); 414–421, https://doi.org/10.1021/acs.est.1c03924
Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. (2017). Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res., 112; 93–99, https://doi.org/10.1016/j.watres.2017.01.042