Antibiotic Resistance in Wastewater: Contamination Sources, Multidrug-Resistant Bacteria, and Treatment Impact in Southern Vietnam

Document Type : Original Research Paper

Authors

Department of Microbiology - Parasitology, School of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam

10.22059/poll.2025.388840.2753

Abstract

Antimicrobial resistance (AMR) poses a critical global challenge, and wastewater is a significant reservoir for antibiotic-resistant bacteria and resistance genes. This study investigates bacterial contamination and antibiotic resistance in wastewater from Southern Vietnam, specifically from the regions of Dong Nai, Binh Duong, Tay Ninh, and Ho Chi Minh City, by analyzing 105 samples of treated and untreated wastewater from healthcare, industrial, pharmaceutical, livestock, food production, and residential sources. Bacterial contamination was observed in 33.3% of samples, with untreated wastewater exhibiting higher contamination rates (38.6%) than treated wastewater (29.5%). The pharmaceutical and industrial wastewaters exhibited the highest contamination rates of 100% and 39.4%, respectively. Among the 51 bacterial isolates, Pseudomonas (27.5%), Burkholderia (23.5%), and Enterobacter (21.6%) were the predominant genera. Antibiotic susceptibility testing revealed high resistance rates, with 66.7% of isolates resistant to tetracycline, 33.3% resistant to sulfamethoxazole/trimethoprime, and 28.2% resistant to ciprofloxacin. Multidrug resistance (MDR) was observed in 25.5% of the isolates, with the highest MDR rates recorded in pharmaceutical (100%) and industrial (68.3%) wastewaters. These findings emphasize the need for stricter regulations on wastewater discharge, particularly from the pharmaceutical and industrial sectors, alongside the implementation of advanced wastewater treatment technologies and routine surveillance programs to mitigate the spread of AMR. This study highlights the regional dynamics of AMR in Vietnam and contributes to the global understanding of wastewater’s role in AMR dissemination, providing a foundation for targeted interventions to protect public health and the environment.

Keywords

Main Subjects


Alam, M.-U., Ferdous, S., Ercumen, A., Lin, A., Kamal, A., Luies, S. K., Sharior, F., Khan, R., Rahman, M. Z., Parvez, S. M., Amin, N., Tadesse, B. T., Moushomi, N. A., Hasan, R., Taneja, N., Islam, M. A., & Rahman, M. (2021). Effective treatment strategies for the removal of antibiotic-resistant bacteria, antibiotic-resistance genes, and antibiotic residues in the effluent from wastewater treatment plants receiving municipal, hospital, and domestic wastewater: Protocol for a systematic review. JMIR Res. Protoc., 10(11); e33365.
Alhazmi, S. M., BaniMustafa, A., Alindonosi, A. R., & Almutairi, A. F. (2024). Metagenomic meta-analysis of antibiotic-resistance genes in wastewater: A perspective from the COVID-19 pandemic. Water, 16(24); 3571.
Ambreetha, S., Zincke, D., Balachandar, D., & Mathee, K. (2024). Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J. Med. Microbiol., 73(2); 001791.
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 6(1); 47.
Azam, M., Kumar, V., Siddiqui, K., Jan, A. T., Sabir, J. S. M., Rather, I. A., Rehman, S., & Haq, Q. M. R. (2020). Pharmaceutical disposal facilitates the mobilization of resistance determinants among microbiota of polluted environment. Saudi Pharm. J., 28(12); 1626–1634.
Azuma, T., Usui, M., & Hayashi, T. (2022). Inactivation of antibiotic-resistant bacteria in wastewater by ozone-based advanced water treatment processes. Antibiotics, 11(2); 210.
Cheng, X., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S. A., Smith, G. B., Nirmalakhandan, N., & Zhang, Y. (2020). Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. Sci. Total Environ., 711; 134435.
Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2020). Tetracycline and sulfonamide antibiotics in soils: Presence, fate and environmental risks. Processes, 8(11); 1479.
Davin-Regli, A., Lavigne, J.-P., & Pagès, J.-M. (2019). Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev., 32(4); e00002-19.
Flores-Vargas, G., Bergsveinson, J., Lawrence, J. R., & Korber, D. R. (2021). Environmental biofilms as reservoirs for antimicrobial resistance. Front. Microbiol., 12; 766242.
Fouz, N., Pangesti, K. N. A., Yasir, M., Al-Malki, A. L., Azhar, E. I., Hill-Cawthorne, G. A., & Abd El Ghany, M. (2020). The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Trop. Med. Infect. Dis., 5(1); 33.
Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., ... & Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun., 10(1); 1124.
Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: Plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev., 33(4); 689–703.
Kalli, M., Noutsopoulos, C., & Mamais, D. (2023). The fate and occurrence of antibiotic-resistant bacteria and antibiotic resistance genes during advanced wastewater treatment and disinfection: A review. Water, 15(11); 2053.
Kotwani, A., Joshi, J., & Kaloni, D. (2021). Pharmaceutical effluent: A critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ. Sci. Pollut. Res., 28(25); 32111–32124.
Le, T. H., Tong, D. K., Pham, T. T. V., Hoang, T. L., Tran, T. K., & Ng, C. (2023). Occurrence and removal of antibiotic resistant Escherichia coli and antibiotic resistance genes in an urban wastewater treatment plant. Int. J. Environ. Sci. Technol., 20(12); 13739–13752.
Leiva, A. M., Piña, B., & Vidal, G. (2021). Antibiotic resistance dissemination in wastewater treatment plants: A challenge for the reuse of treated wastewater in agriculture. Rev. Environ. Sci. Biotechnol., 20(4); 1043–1072.
Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., & Pruden, A. (2022). Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ. Sci. Technol., 56(13); 9149–9160.
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4); 795.
Mosaka, T. B. M., Unuofin, J. O., Daramola, M. O., Tizaoui, C., & Iwarere, S. A. (2023). Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives. Front. Microbiol., 13; 1100102.
Noor, Z. Z., Rabiu, Z., Sani, M. H. M., Samad, A. F. A., Kamaroddin, M. F. A., Perez, M. F., ... & Zakaria, Z. A. (2021). A review of bacterial antibiotic resistance genes and their removal strategies from wastewater. Curr. Pollut. Rep., 7(4); 494–509.
Phu, D. H., Wongtawan, T., Truong, D. B., Van Cuong, N., Carrique-Mas, J., & Thomrongsuwannakij, T. (2022). A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health, 15; 100465.
Quang, M. T., Vo, D. H. T., & Nguyen, M. T. (2024). Establishment of a Pseudomonas aeruginosa biofilm model using a drip flow reactor: Evaluation of antibiotic efficacy against biofilm formation and destruction. Biomed. Biotechnol. Res. J., 8(4); 434–439.
Rozman, U., Duh, D., Cimerman, M., & Turk, S. Š. (2020). Hospital wastewater effluent: Hot spot for antibiotic resistant bacteria. J. Water Sanit. Hyg. Dev., 10(2); 171–178.
Samrot, A. V., Wilson, S., Preeth, R. S. S., Prakash, P., Sathiyasree, M., Saigeetha, S., ... & Rajesh, V. V. (2023). Sources of antibiotic contamination in wastewater and approaches to their removal—An overview. Sustainability, 15(16); 12345.
Tavares, M., Kozak, M., Balola, A., & Sá-Correia, I. (2020). Burkholderia cepacia complex bacteria: A feared contamination risk in water-based pharmaceutical products. Clin. Microbiol. Rev., 33(3); e00139-19.
Tello, A., Austin, B., & Telfer, T. C. (2012). Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect., 120(8); 1100–1106.
Theuretzbacher, U., Baraldi, E., Ciabuschi, F., & Callegari, S. (2023). Challenges and shortcomings of antibacterial discovery projects. Clin. Microbiol. Infect., 29(5); 610–615.
Viet, N. T., Dieu, T. T. M., & Loan, N. T. P. (2013). Current status of sludge collection, transportation and treatment in Ho Chi Minh City. J. Environ. Prot., 4(12); 1076–1083.
Weinstein, M. P., & Lewis, J. S. (2020). The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, organization, functions, and processes. J. Clin. Microbiol., 58(3); e01864-19.
Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & van der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol. Rev., 35(2); 299–323.
Zhao, F., Yu, Q., & Zhang, X.-X. (2023). A mini-review of antibiotic resistance drivers in urban wastewater treatment plants: Environmental concentrations, mechanism and perspectives. Water, 15(17); 2390.