Alam, M.-U., Ferdous, S., Ercumen, A., Lin, A., Kamal, A., Luies, S. K., Sharior, F., Khan, R., Rahman, M. Z., Parvez, S. M., Amin, N., Tadesse, B. T., Moushomi, N. A., Hasan, R., Taneja, N., Islam, M. A., & Rahman, M. (2021). Effective treatment strategies for the removal of antibiotic-resistant bacteria, antibiotic-resistance genes, and antibiotic residues in the effluent from wastewater treatment plants receiving municipal, hospital, and domestic wastewater: Protocol for a systematic review. JMIR Res. Protoc., 10(11); e33365.
Alhazmi, S. M., BaniMustafa, A., Alindonosi, A. R., & Almutairi, A. F. (2024). Metagenomic meta-analysis of antibiotic-resistance genes in wastewater: A perspective from the COVID-19 pandemic. Water, 16(24); 3571.
Ambreetha, S., Zincke, D., Balachandar, D., & Mathee, K. (2024). Genomic and metabolic versatility of Pseudomonas aeruginosa contributes to its inter-kingdom transmission and survival. J. Med. Microbiol., 73(2); 001791.
Ayukekbong, J. A., Ntemgwa, M., & Atabe, A. N. (2017). The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 6(1); 47.
Azam, M., Kumar, V., Siddiqui, K., Jan, A. T., Sabir, J. S. M., Rather, I. A., Rehman, S., & Haq, Q. M. R. (2020). Pharmaceutical disposal facilitates the mobilization of resistance determinants among microbiota of polluted environment. Saudi Pharm. J., 28(12); 1626–1634.
Azuma, T., Usui, M., & Hayashi, T. (2022). Inactivation of antibiotic-resistant bacteria in wastewater by ozone-based advanced water treatment processes. Antibiotics, 11(2); 210.
Cheng, X., Delanka-Pedige, H. M. K., Munasinghe-Arachchige, S. P., Abeysiriwardana-Arachchige, I. S. A., Smith, G. B., Nirmalakhandan, N., & Zhang, Y. (2020). Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. Sci. Total Environ., 711; 134435.
Conde-Cid, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., Álvarez-Rodríguez, E., Fernández-Calviño, D., & Arias-Estévez, M. (2020). Tetracycline and sulfonamide antibiotics in soils: Presence, fate and environmental risks. Processes, 8(11); 1479.
Davin-Regli, A., Lavigne, J.-P., & Pagès, J.-M. (2019). Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev., 32(4); e00002-19.
Flores-Vargas, G., Bergsveinson, J., Lawrence, J. R., & Korber, D. R. (2021). Environmental biofilms as reservoirs for antimicrobial resistance. Front. Microbiol., 12; 766242.
Fouz, N., Pangesti, K. N. A., Yasir, M., Al-Malki, A. L., Azhar, E. I., Hill-Cawthorne, G. A., & Abd El Ghany, M. (2020). The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Trop. Med. Infect. Dis., 5(1); 33.
Hendriksen, R. S., Munk, P., Njage, P., van Bunnik, B., McNally, L., Lukjancenko, O., ... & Aarestrup, F. M. (2019). Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun., 10(1); 1124.
Holden, N., Pritchard, L., & Toth, I. (2009). Colonization outwith the colon: Plants as an alternative environmental reservoir for human pathogenic enterobacteria. FEMS Microbiol. Rev., 33(4); 689–703.
Kalli, M., Noutsopoulos, C., & Mamais, D. (2023). The fate and occurrence of antibiotic-resistant bacteria and antibiotic resistance genes during advanced wastewater treatment and disinfection: A review. Water, 15(11); 2053.
Kotwani, A., Joshi, J., & Kaloni, D. (2021). Pharmaceutical effluent: A critical link in the interconnected ecosystem promoting antimicrobial resistance. Environ. Sci. Pollut. Res., 28(25); 32111–32124.
Le, T. H., Tong, D. K., Pham, T. T. V., Hoang, T. L., Tran, T. K., & Ng, C. (2023). Occurrence and removal of antibiotic resistant Escherichia coli and antibiotic resistance genes in an urban wastewater treatment plant. Int. J. Environ. Sci. Technol., 20(12); 13739–13752.
Leiva, A. M., Piña, B., & Vidal, G. (2021). Antibiotic resistance dissemination in wastewater treatment plants: A challenge for the reuse of treated wastewater in agriculture. Rev. Environ. Sci. Biotechnol., 20(4); 1043–1072.
Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., & Pruden, A. (2022). Antimicrobial resistance monitoring of water environments: A framework for standardized methods and quality control. Environ. Sci. Technol., 56(13); 9149–9160.
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4); 795.
Mosaka, T. B. M., Unuofin, J. O., Daramola, M. O., Tizaoui, C., & Iwarere, S. A. (2023). Inactivation of antibiotic-resistant bacteria and antibiotic-resistance genes in wastewater streams: Current challenges and future perspectives. Front. Microbiol., 13; 1100102.
Noor, Z. Z., Rabiu, Z., Sani, M. H. M., Samad, A. F. A., Kamaroddin, M. F. A., Perez, M. F., ... & Zakaria, Z. A. (2021). A review of bacterial antibiotic resistance genes and their removal strategies from wastewater. Curr. Pollut. Rep., 7(4); 494–509.
Phu, D. H., Wongtawan, T., Truong, D. B., Van Cuong, N., Carrique-Mas, J., & Thomrongsuwannakij, T. (2022). A systematic review and meta-analysis of integrated studies on antimicrobial resistance in Vietnam, with a focus on Enterobacteriaceae, from a One Health perspective. One Health, 15; 100465.
Quang, M. T., Vo, D. H. T., & Nguyen, M. T. (2024). Establishment of a Pseudomonas aeruginosa biofilm model using a drip flow reactor: Evaluation of antibiotic efficacy against biofilm formation and destruction. Biomed. Biotechnol. Res. J., 8(4); 434–439.
Rozman, U., Duh, D., Cimerman, M., & Turk, S. Š. (2020). Hospital wastewater effluent: Hot spot for antibiotic resistant bacteria. J. Water Sanit. Hyg. Dev., 10(2); 171–178.
Samrot, A. V., Wilson, S., Preeth, R. S. S., Prakash, P., Sathiyasree, M., Saigeetha, S., ... & Rajesh, V. V. (2023). Sources of antibiotic contamination in wastewater and approaches to their removal—An overview. Sustainability, 15(16); 12345.
Tavares, M., Kozak, M., Balola, A., & Sá-Correia, I. (2020). Burkholderia cepacia complex bacteria: A feared contamination risk in water-based pharmaceutical products. Clin. Microbiol. Rev., 33(3); e00139-19.
Tello, A., Austin, B., & Telfer, T. C. (2012). Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect., 120(8); 1100–1106.
Theuretzbacher, U., Baraldi, E., Ciabuschi, F., & Callegari, S. (2023). Challenges and shortcomings of antibacterial discovery projects. Clin. Microbiol. Infect., 29(5); 610–615.
Viet, N. T., Dieu, T. T. M., & Loan, N. T. P. (2013). Current status of sludge collection, transportation and treatment in Ho Chi Minh City. J. Environ. Prot., 4(12); 1076–1083.
Weinstein, M. P., & Lewis, J. S. (2020). The Clinical and Laboratory Standards Institute Subcommittee on Antimicrobial Susceptibility Testing: Background, organization, functions, and processes. J. Clin. Microbiol., 58(3); e01864-19.
Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & van der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol. Rev., 35(2); 299–323.
Zhao, F., Yu, Q., & Zhang, X.-X. (2023). A mini-review of antibiotic resistance drivers in urban wastewater treatment plants: Environmental concentrations, mechanism and perspectives. Water, 15(17); 2390.