Abbas, R., Abdelzaher, M., Shehata, N., & Tantawy, M. (2024). Production, characterization and performance of green geopolymer modified with industrial by-products. Scientific Reports, 14(1), 5104.
Abbas, R., Shehata, N., Mohamed, E. A., Salah, H., & Abdelzaher, M. (2021). Environmental safe disposal of cement kiln dust for the production of geopolymers. Egyptian Journal of Chemistry, 64(12), 7529-7537.
Abdelzaher, M. (2023). Sustainable development goals for industry, innovation, and infrastructure: Demolition waste incorporated with nanoplastic waste enhanced the physicomechanical properties of white cement paste composites. Applied Nanoscience, 13(8), 5521-5536.
Abdelzaher, M., Hamouda, A. S., & El-Kattan, I. M. (2023). A comprehensive study on the fire resistance properties of ultra-fine ceramic waste-filled high alkaline white cement paste composites for progressing towards sustainability. Scientific Reports, 13(1), 22097.
Andreola, F., Barbieri, L., Lancellotti, I., Leonelli, C., & Manfredini, T. (2016). Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies. Ceramics International, 42(12), 13333-13338.
Androjić, I., & Marović, I. (2019). Influence of Compaction Energy on Volumetric Properties of Hot-Mix Asphalt with Waste Glass Content. Journal of Materials in Civil Engineering, 31(10).
Arabani, M. (2011). Effect of glass cullet on the improvement of the dynamic behaviour of asphalt concrete. Construction and Building Materials, 25(3), 1181-1185.
Arabani, M., & Kamboozia, N. (2013). The linear visco-elastic behaviour of glasphalt mixture under dynamic loading conditions. Construction and Building Materials, 41, 594-601.
Cenci, M. P., Dal Berto, F. C., Schneider, E. L., & Veit, H. M. (2020). Assessment of LED lamps components and materials for a recycling perspective. Waste Management, 107, 285-293.
Cheng, P., Zhou, B., Chen, Z., & Tan, J. (2017). The TOPSIS method for decision making with 2-tuple linguistic intuitionistic fuzzy sets. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Corinaldesi, V., Gnappi, G., Moriconi, G., & Montenero, A. (2005). Reuse of ground waste glass as aggregate for mortars. Waste Management, 25(2), 197-201.
Delgado, M., Herrera, F., Herrera-Viedma, E., Martin-Bautista, M. J., Martínez, L., & Vila, M. A. (2002). A communication model based on the 2-tuple fuzzy linguistic representation for a distributed intelligent agent system on Internet. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 6(5), 320-328.
Dursun, M., Karsak, E. E., & Karadayi, M. A. (2011a). A Fuzzy MCDM approach for health-care waste management. World Acad Sci Eng Technol, 73(1), 858-864.
Dursun, M., Karsak, E. E., & Karadayi, M. A. (2011b). A fuzzy multi-criteria group decision making framework for evaluating health-care waste disposal alternatives. Expert Systems with Applications, 38(9), 11453-11462.
Gaitanelis, D., Logothetis, D., Perkoulidis, G., & Moussiopoulos, N. (2018). Investigation and evaluation of methods for the reuse of glass from lamps recycling. Journal of Cleaner Production, 172, 1163-1168.
Grigoropoulos, C. J., Doulos, L. T., Zerefos, S. C., Tsangrassoulis, A., & Bhusal, P. (2020). Estimating the benefits of increasing the recycling rate of lamps from the domestic sector: Methodology, opportunities and case study. Waste Management, 101, 188-199.
Idir, R., Cyr, M., & Tagnit-Hamou, A. (2010). Use of fine glass as ASR inhibitor in glass aggregate mortars. Construction and Building Materials, 24(7), 1309-1312.
Jang, Y.-C., Choi, K., Kwon, Y., Song, H., & Kim, H. (2022). Recycling and material flow analysis of end-of-life fluorescent lamps in South Korea. Energies, 15(23), 8825.
Karayannis, V., Moutsatsou, A., Domopoulou, A., Katsika, E., Drossou, C., & Baklavaridis, A. (2017). Fired ceramics 100% from lignite fly ash and waste glass cullet mixtures. Journal of Building Engineering, 14, 1-6.
Kosai, S., Badin, A. B., Qiu, Y., Matsubae, K., Suh, S., & Yamasue, E. (2021). Evaluation of resource use in the household lighting sector in Malaysia considering land disturbances through mining activities. Resources, Conservation and Recycling, 166, 105343.
Lecler, M.-T., Zimmermann, F., Silvente, E., Masson, A., Morèle, Y., Remy, A., & Chollot, A. (2018). Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination. Waste Management, 76, 250-260.
Li, C.-C., Dong, Y., Herrera, F., Herrera-Viedma, E., & Martínez, L. (2017). Personalized individual semantics in computing with words for supporting linguistic group decision making. An application on consensus reaching. Information Fusion, 33, 29-40.
Li, C., Zeng, S., Pan, T., & Zheng, L. (2014). A method based on induced aggregation operators and distance measures to multiple attribute decision making under 2-tuple linguistic environment. Journal of Computer and System Sciences, 80(7), 1339-1349.
Loryuenyong, V., Panyachai, T., Kaewsimork, K., & Siritai, C. (2009). Effects of recycled glass substitution on the physical and mechanical properties of clay bricks. Waste Management, 29(10), 2717-2721.
Ma, J., Lu, J., & Zhang, G. (2010). Decider: A fuzzy multi-criteria group decision support system. Knowledge-Based Systems, 23(1), 23-31.
Martı´nez, L., & Herrera, F. (2012). An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. Information Sciences, 207, 1-18.
Martinez, L., & Herrera, F. (2000). A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Transactions on Fuzzy Systems, 8(6), 746-752.
Martinez, L., Ruan, D., & Herrera, F. (2010). Computing with words in decision support systems: an overview on models and applications. International Journal of Computational Intelligence Systems, 3(4), 382-395.
Mohajerani, A., Vajna, J., Cheung, T. H. H., Kurmus, H., Arulrajah, A., & Horpibulsuk, S. (2017). Practical recycling applications of crushed waste glass in construction materials: A review. Construction and Building Materials, 156, 443-467.
Morais, A. S. C., da Costa Caldas, T. C., Monteiro, S. N., & Vieira, C. M. F. (2012). Characterization of Fluorescent Lamp Glass Waste Powders. Materials Science Forum, 727–728, 1579-1584.
Morais, A. S. C., Vieira, C. M. F., Rodriguez, R. J. S., Monteiro, S. N., Candido, V. S., & Ferreira, C. L. (2016). Fluorescent Lamp Glass Waste Incorporation into Clay Ceramic: A Perfect Solution. JOM, 68(9), 2425-2434.
Novais, R. M., Ascensão, G., Seabra, M. P., & Labrincha, J. A. (2016). Waste glass from end-of-life fluorescent lamps as raw material in geopolymers. Waste Management, 52, 245-255.
Pant, D., & Singh, P. (2013). Pollution due to hazardous glass waste. Environmental Science and Pollution Research, 21(4), 2414-2436.
Pavón, S., Fortuny, A., Coll, M. T., & Sastre, A. M. (2018). Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Waste Management, 82, 241-248.
Rahman, M., Kim, J., Lerondel, G., Bouzidi, Y., Nomenyo, K., & Clerget, L. (2017). Missing research focus in end-of-life management of light-emitting diode (LED) lamps. Resources, Conservation and Recycling, 127, 256-258.
Rajabipour, F., Maraghechi, H., & Fischer, G. (2010). Investigating the Alkali-Silica Reaction of Recycled Glass Aggregates in Concrete Materials. Journal of Materials in Civil Engineering, 22(12), 1201-1208.
Ren, F., Pei, Z., & Wu, K. (2019). Selection of satisfied association rules via aggregation of linguistic satisfied degrees. IEEE Access, 7, 91518-91534.
Rivera, J. F., Cuarán-Cuarán, Z. I., Vanegas-Bonilla, N., & Mejía de Gutiérrez, R. (2018). Novel use of waste glass powder: Production of geopolymeric tiles. Advanced Powder Technology, 29(12), 3448-3454.
Rodríguez, R. M., & Martínez, L. (2013). An analysis of symbolic linguistic computing models in decision making. International Journal of General Systems, 42(1), 121-136.
Ruan, D., Laes, E., Meskens, G., Zhang, G., Lu, J., & Ma, J. (2010). Multi-criteria Group Decision Support with Linguistic Variables in Long-term Scenarios for Belgian Energy Policy. In.
Salem, Z. T. A., Khedawi, T. S., Baker, M. B., & Abendeh, R. (2017). Effect of waste glass on properties of asphalt concrete mixtures. Jordan Journal of Civil Engineering, 11(1).
Saparuddin, D. I., Mohd Zaid, M. H., Aziz, S. H. A., & Matori, K. A. (2020). Reuse of Eggshell Waste and Recycled Glass in the Fabrication Porous Glass–Ceramics. Applied Sciences, 10(16), 5404.
Shafabakhsh, G. H., & Sajed, Y. (2014). Investigation of dynamic behavior of hot mix asphalt containing waste materials; case study: Glass cullet. Case Studies in Construction Materials, 1, 96-103.
Shi, C., Wu, Y., Riefler, C., & Wang, H. (2005). Characteristics and pozzolanic reactivity of glass powders. Cement and Concrete Research, 35(5), 987-993.
Silva, R. V., de Brito, J., Lye, C. Q., & Dhir, R. K. (2017). The role of glass waste in the production of ceramic-based products and other applications: A review. Journal of Cleaner Production, 167, 346-364.
Sohaib, O., Naderpour, M., Hussain, W., & Martinez, L. (2019). Cloud computing model selection for e-commerce enterprises using a new 2-tuple fuzzy linguistic decision-making method. Computers & Industrial Engineering, 132, 47-58.
Taghipour, H., Amjad, Z., Jafarabadi, M. A., Gholampour, A., & Nowrouz, P. (2014). Determining heavy metals in spent compact fluorescent lamps (CFLs) and their waste management challenges: Some strategies for improving current conditions. Waste Management, 34(7), 1251-1256.
Takaoka, M. (2014). Mercury and mercury-containing waste management in Japan. Journal of Material Cycles and Waste Management, 17(4), 665-672.
Tao, Z., Chen, H., Zhou, L., & Liu, J. (2014). 2-Tuple linguistic soft set and its application to group decision making. Soft Computing, 19(5), 1201-1213.
Terro, M. J. (2006). Properties of concrete made with recycled crushed glass at elevated temperatures. Building and Environment, 41(5), 633-639.
Topçu, İ. B., & Canbaz, M. (2004). Properties of concrete containing waste glass. Cement and Concrete Research, 34(2), 267-274.
Viana, L., & Saint’Pierre, T. (2024). Evaluation of the mobility of toxic elements from fluorescent lamps under acid rain and landfill leachate conditions. International Journal of Environmental Science and Technology, 1-16.
Vuckovic, V., Bozanic, D., & Tesic, D. (2022). Application of multi-criteria decision-making in the selection of a location for the disposal of fluorescent tubes containing mercury in the territory of the city of Nis.SECMAN Security and Crisis Management - Theory and Practice,
Wu, Y., Yin, X., Zhang, Q., Wang, W., & Mu, X. (2014). The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resources, Conservation and Recycling, 88, 21-31.
Zamprogno Rebello, R., Weitzel Dias Carneiro Lima, M. T., Yamane, L. H., & Ribeiro Siman, R. (2020). Characterization of end-of-life LED lamps for the recovery of precious metals and rare earth elements. Resources, Conservation and Recycling, 153, 104557.
Zimmermann, H. J. (2010). Fuzzy set theory. WIREs Computational Statistics, 2(3), 317-332.