Adsorptive Removal of Crystal violet Dye Using Biochar Synthesised from Agriculture Residue: A Sustainable Study

Document Type : Original Research Paper

Authors

Department of Environmental Science, Maharishi Dayanand University, Rohtak-124001. Haryana, India

10.22059/poll.2025.390103.2788

Abstract

In recent years, there has been a growing interest in eliminating pollutants from aqueous solutions through adsorption onto carbonaceous materials. Rice straw biochar (RCB) and sugarcane bagasse biochar (SCB) were evaluated as adsorbents for removing crystal violet (CV) dye from aqueous solutions. pH (1–12), adsorbent dosage (0.1–0.5 g/L), CV concentration (10–50 mg/L), and contact time (30–150 min) were varied at room temperature to obtain the optimum condition. The maximum monolayer adsorption capacities of 476.2 and 161.29 mg/g for SCB and RCB, respectively were obtained at optimum condition. The adsorption equilibria fitted best to the Freundlich isotherm model (R2 = 0.9985), and the kinetics followed a pseudo-second-order model (R2 = 0.9907), indicating chemisorption and monolayer coverage. Under these conditions, Crystal violet dye removal efficiencies exceeded 90% for both biochars. These results demonstrate the high potential of RCB and SCB as low-cost bioadsorbents for effective CV dye removal in the wastewater treatment.

Keywords

Main Subjects


Abd-Elhamid, A. I., Emran, M., El-Sadek, M. H., El-Shanshory, A. A., Soliman, H. M., Akl, M. A., & Rashad, M. (2020). Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Applied Water Science, 10; 1-11.
Abu Elella, M. H., Sabaa, M. W., ElHafeez, E. A., & Mohamed, R. R. (2019). Crystal violet dye removal using crosslinked grafted xanthan gum. International Journal of Biological Macromolecules, 137; 1086-1101. 
Ahmad Khan, F., Ahad, A., Shah, S. S., & Farooqui, M. (2023). Adsorption of crystal violet dye using Platanus orientalis (Chinar tree) leaf powder and its biochar: Equilibrium, kinetics and thermodynamics study. International Journal of Environmental Analytical Chemistry, 103(16); 4820–4840.
APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995. 
Arivumani, V., Singh, V., Geetha, C., & Senthilkumar, C. (2024). Activated rice husk biochar for azo dye removal: Batch adsorption, kinetics and thermodynamic studies. Global NEST Journal, 26(2); 05498. 
Azhar-ul-Haq, M., Javed, T., Abid, M. A., Masood, H. T., & Muslim, N. (2024). Adsorptive removal of hazardous crystal violet dye onto banana peel powder: equilibrium, kinetic and thermodynamic studies. Journal of Dispersion Science and Technology, 45(3); 475-490.
Barría, Y., Burbano, A., James, A., Gascó, G., & Méndez, A. (2023). Sorption capacity of biochars obtained by gasification of rice husks and wild sugarcane: Removal of malachite green and arsenic from water solutions. Biomass Conversion and Biorefinery, 15; 2131–2143.
Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H. U., ... & Nazir, A. (2021). Enhanced adsorption of Foron Black RD 3GRN dye onto sugarcane bagasse biomass and Na-alginate composite. Desalination Water Treat, 216; 423-435.
Cao, D., Wang, J., Zhang, Q., Wen, Y., Dong, B., Liu, R., Yang, X., & Geng, G. (2019). Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210; 9-13. 
Chahinez, H. O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19; 100872.
Chen, X., Lin, Q., He, R., Zhao, X., & Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresource technology, 241; 236-243.
Conceição, F., Moruzzi, R., Duarte, G., Galileu Speranza, L., Antunes, M., & Mancini, S. (2022). Biochar from sugarcane bagasse for reactive dye adsorption considering a circular economy approach. Journal of Textile Engineering & Fashion Technology, 8, 126–132.
Foong, S. Y., Chan, Y. H., Chin, B. L. F., Lock, S. S. M., Yee, C. Y., Yiin, C. L., ... & Lam, S. S. (2022). Production of biochar from rice straw and its application for wastewater remediation− An overview. Bioresource Technology, 127588.
Geetha, T., Smitha, J. K., Sebastian, M., Litty, M. I., Joseph, B., Joseph, J., & Nisha, T. S. (2024). Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon, 10(21); e39450
Gonçalves, J. O., Crispim, M. M., Rios, E. C., Silva, L. F., de Farias, B. S., Sant’Anna Cadaval Junior, T. R., ... & Dotto, G. L. (2024). New and effective cassava bagasse–modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. Environmental Science and Pollution Research, 31(4); 5209-5220.
Hazzaa, R., & Hussein, M. (2015). Cationic dye removal by sugarcane bagasse activated carbon from aqueous solution. Global NEST Journal, 17(4); 784-795.
Hussein, T. K., & Jasim, N. A. (2019). Removal of crystal violet and methylene blue from synthetic industrial wastewater using fennel seed as an adsorbent. Journal of Engineering Science and Technology, 14(5); 2947-2963.
Homagai, P. L., Poudel, R., Poudel, S., & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4); e09261.
Jabeen, A., & Bhatti, H. N. (2021). Adsorptive removal of reactive green 5 (RG-5) and direct yellow 50 (DY-50) from simulated wastewater by Mangifera indica seed shell and its magnetic composite: Batch and Column study. Environmental Technology & Innovation, 23; 101685.
Jais, F. M., Ibrahim, S., Chee, C. Y., & Ismail, Z. (2021). High removal of crystal violet dye and tetracycline by hydrochloric acid assisted hydrothermal carbonization of sugarcane bagasse prepared at high yield. Sustainable Chemistry and Pharmacy, 24; 100541.
Kamal, M. A., Bibi, S., Bokhari, S. W., Siddique, A. H., & Yasin, T. (2017). Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. Reactive and Functional Polymers, 110; 21-29.
Khan, S., Ahamad, Z., & Nasar, A. (2023). Development and utilization of raw and NaOH-modified peanut hull as potential adsorbents for crystal violet dye removal from wastewater. Biomass Conversion and Biorefinery, 1-21.
Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44(2); 266-269.
Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169; 564-582. 
Kyi, P. P., Quansah, J. O., Lee, C. G., Moon, J. K., & Park, S. J. (2020). The removal of crystal violet from textile wastewater using palm kernel shell-derived biochar. Applied Sciences, 10(7); 2251.
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2); 275-290. 
Li, X., Li, M. F., Bian, J., Wang, B., Xu, J. K., & Sun, R. C. (2015). Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products. RSC advances, 5(94); 77147-77153.
Luyen, N. T., Linh, H. X., & Huy, T. Q. (2020). Preparation of rice husk biochar-based magnetic nanocomposite for effective removal of crystal violet. Journal of Electronic Materials, 49(2); 1142-1149.
Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5; 597-609.
Moharm, A. E., El Naeem, G. A., Soliman, H. M., I., A., A., A., Kassem, T. S., Nayl, A. A., & Bräse, S. (2021). Fabrication and Characterization of Effective Biochar Biosorbent Derived from Agricultural Waste to Remove Cationic Dyes from Wastewater. Polymers, 14(13); 2587.
Nithyalakshmi, B., & Saraswathi, R. (2023a). Removal of colorants from wastewater using biochar derived from leaf waste. Biomass Conversion and Biorefinery, 1-17.
Nithyalakshmi, B., Saraswathi, R., & Praveen, S. (2023b). Removal of basic fuchsin red dye by turmeric leaf waste biochar: Batch adsorption studies, isotherm kinetics and RSM studies. Global Nest Journal, 25(1); 17-27.
Patil, S. A., Kumbhar, P. D., Satvekar, B. S., Harale, N. S., Bhise, S. C., Patil, S. K., ... & Anuse, M. A. (2022). Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study. Journal of the Iranian Chemical Society, 19(7); 2891-2906.
Peng, X. Y. L. L., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and tillage research, 112(2); 159-166.
Rápó, E., & Tonk, S. (2020). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(17); 5419. 
Sackey, E. A., Song, Y., Yu, Y., & Zhuang, H. (2021). Biochars derived from bamboo and rice straw for sorption of basic red dyes. PLoS One, 16(7); e0254637.
Sahoo, J. K., Hota, A., Singh, C., Barik, S., Sahu, N., Sahoo, S. K., ... & Sahoo, H. (2023). Rice husk and rice straw based materials for toxic metals and dyes removal: A comprehensive and critical review. International Journal of Environmental Analytical Chemistry, 103(20); 9131-9153.
Salah omer, A., A.El Naeem, G., Abd-Elhamid, A., O.M. Farahat, O., A. El-Bardan, A., M.A. Soliman, H., & Nayl, A. (2022). Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: Characterization, kinetic and isotherm studies. Journal of Materials Research and Technology, 19; 3241-3254.
Salahudeen, N., & Rasheed, A. A. (2020). Kinetics and thermodynamics of hydrolysis of crystal violet at ambient and below ambient temperatures. Scientific Reports, 10(1); 1-9. 
Shin, J., Kwak, J., Lee, Y. G., Kim, S., Choi, M., Bae, S., ... & Chon, K. (2021). Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions. Environmental Pollution, 270; 116244.
Wathukarage, A., Herath, I., Iqbal, M. C. M., & Vithanage, M. (2019). Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environmental geochemistry and health, 41; 1647-1661.
Yang, P., Lu, Y., Zhang, H., Li, R., Hu, X., Shahab, A., Elnaggar, A. Y., Alrefaei, A. F., AlmutairiI, M. H., & Ali, E. (2024). Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation. Environmental Technology & Innovation, 33; 103459.
Zafeer, M. K., Menezes, R. A., Venkatachalam, H., & Bhat, K. S. (2024). Sugarcane bagasse-based biochar and its potential applications: a review. Emergent Materials, 7(1); 133-161.
Zhang, H., Xue, G., Chen, H., & Li, X. (2018). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191; 64-71.
Zhao, Y., Li, W., Zhao, X., Wang, D. P., & Liu, S. X. (2013). Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose. Materials Research Innovations, 17(7); 546-551.