Abd-Elhamid, A. I., Emran, M., El-Sadek, M. H., El-Shanshory, A. A., Soliman, H. M., Akl, M. A., & Rashad, M. (2020). Enhanced removal of cationic dye by eco-friendly activated biochar derived from rice straw. Applied Water Science, 10; 1-11.
Abu Elella, M. H., Sabaa, M. W., ElHafeez, E. A., & Mohamed, R. R. (2019). Crystal violet dye removal using crosslinked grafted xanthan gum. International Journal of Biological Macromolecules, 137; 1086-1101.
Ahmad Khan, F., Ahad, A., Shah, S. S., & Farooqui, M. (2023). Adsorption of crystal violet dye using Platanus orientalis (Chinar tree) leaf powder and its biochar: Equilibrium, kinetics and thermodynamics study. International Journal of Environmental Analytical Chemistry, 103(16); 4820–4840.
APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1995.
Arivumani, V., Singh, V., Geetha, C., & Senthilkumar, C. (2024). Activated rice husk biochar for azo dye removal: Batch adsorption, kinetics and thermodynamic studies. Global NEST Journal, 26(2); 05498.
Azhar-ul-Haq, M., Javed, T., Abid, M. A., Masood, H. T., & Muslim, N. (2024). Adsorptive removal of hazardous crystal violet dye onto banana peel powder: equilibrium, kinetic and thermodynamic studies. Journal of Dispersion Science and Technology, 45(3); 475-490.
Barría, Y., Burbano, A., James, A., Gascó, G., & Méndez, A. (2023). Sorption capacity of biochars obtained by gasification of rice husks and wild sugarcane: Removal of malachite green and arsenic from water solutions. Biomass Conversion and Biorefinery, 15; 2131–2143.
Bhatti, H. N., Sadaf, S., Naz, M., Iqbal, M., Safa, Y., Ain, H. U., ... & Nazir, A. (2021). Enhanced adsorption of Foron Black RD 3GRN dye onto sugarcane bagasse biomass and Na-alginate composite. Desalination Water Treat, 216; 423-435.
Cao, D., Wang, J., Zhang, Q., Wen, Y., Dong, B., Liu, R., Yang, X., & Geng, G. (2019). Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 210; 9-13.
Chahinez, H. O., Abdelkader, O., Leila, Y., & Tran, H. N. (2020). One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environmental Technology & Innovation, 19; 100872.
Chen, X., Lin, Q., He, R., Zhao, X., & Li, G. (2017). Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresource technology, 241; 236-243.
Conceição, F., Moruzzi, R., Duarte, G., Galileu Speranza, L., Antunes, M., & Mancini, S. (2022). Biochar from sugarcane bagasse for reactive dye adsorption considering a circular economy approach. Journal of Textile Engineering & Fashion Technology, 8, 126–132.
Foong, S. Y., Chan, Y. H., Chin, B. L. F., Lock, S. S. M., Yee, C. Y., Yiin, C. L., ... & Lam, S. S. (2022). Production of biochar from rice straw and its application for wastewater remediation− An overview. Bioresource Technology, 127588.
Geetha, T., Smitha, J. K., Sebastian, M., Litty, M. I., Joseph, B., Joseph, J., & Nisha, T. S. (2024). Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon, 10(21); e39450
Gonçalves, J. O., Crispim, M. M., Rios, E. C., Silva, L. F., de Farias, B. S., Sant’Anna Cadaval Junior, T. R., ... & Dotto, G. L. (2024). New and effective cassava bagasse–modified biochar to adsorb Food Red 17 and Acid Blue 9 dyes in a binary mixture. Environmental Science and Pollution Research, 31(4); 5209-5220.
Hazzaa, R., & Hussein, M. (2015). Cationic dye removal by sugarcane bagasse activated carbon from aqueous solution. Global NEST Journal, 17(4); 784-795.
Hussein, T. K., & Jasim, N. A. (2019). Removal of crystal violet and methylene blue from synthetic industrial wastewater using fennel seed as an adsorbent. Journal of Engineering Science and Technology, 14(5); 2947-2963.
Homagai, P. L., Poudel, R., Poudel, S., & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4); e09261.
Jabeen, A., & Bhatti, H. N. (2021). Adsorptive removal of reactive green 5 (RG-5) and direct yellow 50 (DY-50) from simulated wastewater by Mangifera indica seed shell and its magnetic composite: Batch and Column study. Environmental Technology & Innovation, 23; 101685.
Jais, F. M., Ibrahim, S., Chee, C. Y., & Ismail, Z. (2021). High removal of crystal violet dye and tetracycline by hydrochloric acid assisted hydrothermal carbonization of sugarcane bagasse prepared at high yield. Sustainable Chemistry and Pharmacy, 24; 100541.
Kamal, M. A., Bibi, S., Bokhari, S. W., Siddique, A. H., & Yasin, T. (2017). Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. Reactive and Functional Polymers, 110; 21-29.
Khan, S., Ahamad, Z., & Nasar, A. (2023). Development and utilization of raw and NaOH-modified peanut hull as potential adsorbents for crystal violet dye removal from wastewater. Biomass Conversion and Biorefinery, 1-21.
Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44(2); 266-269.
Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169; 564-582.
Kyi, P. P., Quansah, J. O., Lee, C. G., Moon, J. K., & Park, S. J. (2020). The removal of crystal violet from textile wastewater using palm kernel shell-derived biochar. Applied Sciences, 10(7); 2251.
Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., & Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2); 275-290.
Li, X., Li, M. F., Bian, J., Wang, B., Xu, J. K., & Sun, R. C. (2015). Hydrothermal carbonization of bamboo in an oxalic acid solution: effects of acid concentration and retention time on the characteristics of products. RSC advances, 5(94); 77147-77153.
Luyen, N. T., Linh, H. X., & Huy, T. Q. (2020). Preparation of rice husk biochar-based magnetic nanocomposite for effective removal of crystal violet. Journal of Electronic Materials, 49(2); 1142-1149.
Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech, 5; 597-609.
Moharm, A. E., El Naeem, G. A., Soliman, H. M., I., A., A., A., Kassem, T. S., Nayl, A. A., & Bräse, S. (2021). Fabrication and Characterization of Effective Biochar Biosorbent Derived from Agricultural Waste to Remove Cationic Dyes from Wastewater. Polymers, 14(13); 2587.
Nithyalakshmi, B., & Saraswathi, R. (2023a). Removal of colorants from wastewater using biochar derived from leaf waste. Biomass Conversion and Biorefinery, 1-17.
Nithyalakshmi, B., Saraswathi, R., & Praveen, S. (2023b). Removal of basic fuchsin red dye by turmeric leaf waste biochar: Batch adsorption studies, isotherm kinetics and RSM studies. Global Nest Journal, 25(1); 17-27.
Patil, S. A., Kumbhar, P. D., Satvekar, B. S., Harale, N. S., Bhise, S. C., Patil, S. K., ... & Anuse, M. A. (2022). Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study. Journal of the Iranian Chemical Society, 19(7); 2891-2906.
Peng, X. Y. L. L., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and tillage research, 112(2); 159-166.
Rápó, E., & Tonk, S. (2020). Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(17); 5419.
Sackey, E. A., Song, Y., Yu, Y., & Zhuang, H. (2021). Biochars derived from bamboo and rice straw for sorption of basic red dyes. PLoS One, 16(7); e0254637.
Sahoo, J. K., Hota, A., Singh, C., Barik, S., Sahu, N., Sahoo, S. K., ... & Sahoo, H. (2023). Rice husk and rice straw based materials for toxic metals and dyes removal: A comprehensive and critical review. International Journal of Environmental Analytical Chemistry, 103(20); 9131-9153.
Salah omer, A., A.El Naeem, G., Abd-Elhamid, A., O.M. Farahat, O., A. El-Bardan, A., M.A. Soliman, H., & Nayl, A. (2022). Adsorption of crystal violet and methylene blue dyes using a cellulose-based adsorbent from sugercane bagasse: Characterization, kinetic and isotherm studies. Journal of Materials Research and Technology, 19; 3241-3254.
Salahudeen, N., & Rasheed, A. A. (2020). Kinetics and thermodynamics of hydrolysis of crystal violet at ambient and below ambient temperatures. Scientific Reports, 10(1); 1-9.
Shin, J., Kwak, J., Lee, Y. G., Kim, S., Choi, M., Bae, S., ... & Chon, K. (2021). Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions. Environmental Pollution, 270; 116244.
Wathukarage, A., Herath, I., Iqbal, M. C. M., & Vithanage, M. (2019). Mechanistic understanding of crystal violet dye sorption by woody biochar: implications for wastewater treatment. Environmental geochemistry and health, 41; 1647-1661.
Yang, P., Lu, Y., Zhang, H., Li, R., Hu, X., Shahab, A., Elnaggar, A. Y., Alrefaei, A. F., AlmutairiI, M. H., & Ali, E. (2024). Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation. Environmental Technology & Innovation, 33; 103459.
Zafeer, M. K., Menezes, R. A., Venkatachalam, H., & Bhat, K. S. (2024). Sugarcane bagasse-based biochar and its potential applications: a review. Emergent Materials, 7(1); 133-161.
Zhang, H., Xue, G., Chen, H., & Li, X. (2018). Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere, 191; 64-71.
Zhao, Y., Li, W., Zhao, X., Wang, D. P., & Liu, S. X. (2013). Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose. Materials Research Innovations, 17(7); 546-551.