Lagrangian Model Analysis for Nuclear Materials Dispersion in Marine Environments (Persian Gulf)

Document Type : Original Research Paper

Authors

1 Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, P.O.Box 7193616548, Shiraz, Iran

2 Safety Research Center, Shiraz University, P.O.Box 7193616548, Shiraz, Iran

3 Shahrood Branch, Islamic Azad University, P.O.Box 43189-36199, Shahrood, Iran

10.22059/poll.2025.391262.2821

Abstract

This study analyzes the sensitivity of a Lagrangian model for the dispersion of nuclear materials in marine environments. The dispersion modeling of radionuclides in marine environments is a crucial step in an effective emergency preparedness and response (EPR) framework. The impact of number of particles, time step, and distance from the pollutant source on the output of the Lagrangian model was evaluated. According to the results, to keep the model's output unchanged when repeating the simulation, the initial number of particles must be at least 400,000. The minimum time step that maximizes accuracy is equal to the time step of the model's input data, but reducing the time step increases computational costs and execution time. Although distance from the pollution source did not significantly affect concentration levels, at grid points with high concentrations, the coefficient of variation was lower across different implementations, regardless of distance from the pollution source. To the best of the authors’ knowledge, this study is the first sensitivity analysis of a Lagrangian model’s parameters for radionuclide dispersion in the Persian Gulf.

Keywords

Main Subjects


Alrammah, I., Saeed, I. M. M., Mhareb, M. H. A., & Alotiby, M. (2022). Atmospheric dispersion modeling and radiological environmental impact assessment for normal operation of a proposed pressurized water reactor in the eastern coast of Saudi Arabia. Progress in Nuclear Energy, 145, 104121.
Alrammah, I. A. (2023). Analysis of nuclear accident scenarios and emergency planning zones for a proposed Advanced Power Reactor 1400 (APR1400). Nuclear Engineering and Design, 407, 112275.
Boon, J. D. (2013). Secrets of the tide: tide and tidal current analysis and predictions, storm surges and sea level trends. Elsevier. 
Brovchenko, I., Kim, K. O., Maderich, V., Jung, K. T., & Kovalets, K. (2024). Lagrangian modelling of reactive contaminant transport in the multi-component marine medium. Computers & Geosciences, 187, 105579.
Feyzinejad, M., Malakooti, H., Sadrinasab, M., & Ghader, S. (2019). Radiological dose assessment by means of a coupled WRF-HYSPLIT model under normal operation of Bushehr nuclear power plant. Pollution, 5(2), 429-448. 
Hanfland, R., Pattantyús-Ábrahám, M., Richter, C., Brunner, D., & Voigt, C. (2024). The Lagrangian Atmospheric Radionuclide Transport Model (ARTM)—development, description and sensitivity analysis. Air Quality, Atmosphere & Health, 17(6), 1235-1252. 
Hassanvand, M., & Mirnejad, Z. (2019). Hydrodynamic model of radionuclide dispersion during normal operation and accident of Bushehr nuclear power plant. Progress in Nuclear energy, 116, 115-123.
Kamyab, A., Torabi Azad, M., Sadeghi, M., & Akhound, A. (2018). Dispersion Simulation of Cesium 137 Released from a Hypothetical Accident at the Bushehr Nuclear Power Plant in Persian Gulf. International Journal Of Coastal, Offshore And Environmental Engineering (ijcoe), 3(3), 13-17.
Kim, H., Kim, K. O., Kim, S. Y., Suh, K. S., & Kwon, K. (2025). Dispersion behavior of Fukushima-derived 137Cs over the North Pacific with emphasis on its sensitivity to vertical velocity and diffusion. Marine Pollution Bulletin, 212, 117562.
Konoplev, A. (2022). Fukushima and Chernobyl: similarities and differences of radiocesium behavior in the soil–water environment. Toxics, 10(10), 578. 
Lee, J. K., Kim, J. C., Lee, K. J., Belorid, M., Beeley, P. A., & Yun, J. I. (2014). Assessment of wind characteristics and atmospheric dispersion modeling of 137Cs on the Barakah NPP area in the UAE. Nuclear Engineering and Technology, 46(4), 557-568. 
Li, H., Chen, D., Nie, B., & Wang, D. (2025). Numerical modeling and parameters analysis of marine radionuclide dispersion under the Fukushima Daiichi nuclear accident. Progress in Nuclear Energy, 184, 105716. 
Livingston, H. D., & Povinec, P. P. (2000). Anthropogenic marine radioactivity. Ocean & Coastal Management, 43(8-9), 689-712. 
Maderich, V., Bezhenar, R., Kovalets, I., Khalchenkov, O., & Brovchenko, I. (2023). Long-Term Contamination of the Arabian Gulf as a Result of Hypothetical Nuclear Power Plant Accidents. Journal of Marine Science and Engineering, 11(2), 331. 
Meeker, W. Q., Escobar, L. A., & Pascual, F. G. (2021). Statistical methods for reliability data. John Wiley & Sons.
Mohebbi-Nozar, S. L., Mortazavi, M. S., Seraji, F., & Bahreini, P. (2022). Health Risk Assessment of Okadaic Acid and Domoic Acid in some Edible Bivalves from Hormozgan Province in the North of Persian Gulf. Pollution (2383451X), 8(3). 
Muhamad, L. H., Karim, M. K. A., Yusof, K. A., & Basri, N. A. (2024, May). Lagrangian and Eulerian approach to predict the movement of radionuclides in selected potential sites in Malaysia during the monsoon period. In IOP Conference Series: Materials Science and Engineering (Vol. 1308, No. 1, p. 012006). IOP Publishing.
Nabavi, S. O., Christoudias, T., Proestos, Y., Fountoukis, C., Al-Sulaiti, H., & Lelieveld, J. (2023). Spatiotemporal variation of radionuclide dispersion from nuclear power plant accidents using FLEXPART mini-ensemble modeling. Atmospheric Chemistry and Physics, 23(13), 7719-7739. 
Nesterov, O., Addad, Y., Bilal, S., Bosc, E., Abida, R., Al Shehhi, M. R., & Temimi, M. (2023). A numerical assessment of the dispersion of dissolved pollutants in the Arabian Gulf associated with the Barakah nuclear power plant. Ocean Modelling, 186, 102274.
Norouzi, M. (2020). Evaluating the accumulation and consumption hazard risk of heavy metals in the fish muscles of species living in the waters of the Persian Gulf, Iran. Pollution, (4). 
Parker, B. B. (2007). Tidal analysis and prediction. 
Periáñez, R., Bezhenar, R., Brovchenko, I., Jung, K. T., Kamidara, Y., Kim, K. O., ... & Suh, K. S. (2019). Fukushima 137Cs releases dispersion modelling over the Pacific Ocean. Comparisons of models with water, sediment and biota data. Journal of environmental radioactivity, 198, 50-63. 
Periáñez, R. (2021). APERTRACK: A particle-tracking model to simulate radionuclide transport in the Arabian/Persian Gulf. Progress in Nuclear Energy, 142, 103998.
Periáñez, R. (2005). Modelling the dispersion of radionuclides in the marine environment. Springer-Verlag Berlin Heidelberg. 
Pirouzmand, A., Dehghani, P., Hadad, K., & Nematollahi, M. (2015). Dose assessment of radionuclides dispersion from Bushehr nuclear power plant stack under normal operation and accident conditions. International Journal of Hydrogen Energy, 40(44), 15198-15205.
Pirouzmand, A., Kowsar, Z., & Dehghani, P. (2018). Atmospheric dispersion assessment of radioactive materials during severe accident conditions for Bushehr nuclear power plant using HYSPLIT code. Progress in Nuclear Energy, 108, 169-178. 
Pous, S., Carton, X., & Lazure, P. (2012). A process study of the tidal circulation in the Persian Gulf. Open Journal of Marine Science, 2(4), 131-140. 
Rajkhowa, S., Sarma, J., & Das, A. R. (2021). Radiological contaminants in water: pollution, health risk, and treatment. In Contamination of water (pp. 217-236). Academic Press. 
Sadeghi, K., Ghazaie, S. H., Stepanova, A., Sokolova, E., Modestov, V., Shirani, A., & Khoshmaram, M. (2024). Application of uncertainty and sensitivity analysis in dose assessment during a postulated LBLOCA for VVER-1000 nuclear reactor. Nuclear Engineering and Design, 421, 113099. 
Soulsby, R. (1997). Dynamics of marine sands. (London: Thomas Telford)
Valizadeh, B., Heydarizade, Y., Tayebi, J., & Rezaie, M. R. (2024). A Simulation to Assess the Probability of the Spread of Radioactive Materials from the Zaporizhzhia Nuclear Power Plant using the HYSPLIT Model. Pollution, 10(1), 595-605. 
Vaughan, G. O., Al-Mansoori, N., & Burt, J. A. (2019). The Arabian Gulf. In World Seas: an Environmental Evaluation (pp. 1–23). Elsevier.