Seasonal Eutrophication Dynamics in Ahmed El Hansali Reservoir, Morocco: A Multivariate Statistical Approach

Document Type : Original Research Paper

Authors

1 Laboratory of Biotechnology, Bio-resources and Bioinformatics, Khénifra Higher School of Technology; Sultane Moulay Slimane University, Morocco

2 Laboratory of “Scientific Research and Educational Innovation»; Regional Center for Education and Training Professions, (CRMEF Rabat-Salé-Kénitra), Morocco

3 Laboratory of multidisciplinary research in science, technology and society, Khénifra Higher School of Technology; Sultane Moulay Slimane University, Morocco

4 Laboratory of Biotechnology and Valorisation of Plant Genetic Resources, Faculty of Sciences and Techniques, University Sultan Moulay Slimane Beni Mellal, Beni Mellal, Morocco

5 Faculty of Science Ibn Tofail University Kenitra Morocco

10.22059/poll.2025.392489.2857

Abstract

In Morocco, dams are essential for supplying drinking water, supporting agriculture, and regulating watercourses, but these aquatic ecosystems face increasing pressures, particularly eutrophication, which degrades water quality and threatens biodiversity. This study analyzed the seasonal dynamics of eutrophication in the Ahmed El Hansali reservoir (Moroccan Middle Atlas) between 2019 and 2023, utilizing multivariate statistical analysis (Principal Component Analysis and multiple linear regression). A limitation was quarterly data collection, which might not capture short-term fluctuations. Results revealed a significant correlation between phytoplankton biomass and nutrient levels, especially total Kjeldahl nitrogen (NTK) (r=0.656 p<0.01). NTK was the most significant predictor, positively impacting chlorophyll-a (Chl-a) in surface waters (for each unit increase in NTK, Chl-a increased by 15.16 µg/L). Other parameters had minimal effects. Marked seasonal variability in water quality was observed, ranging from oligotrophic in winter and autumn to mesotrophic in spring and summer. Maximum productivity (15.73 µg/L Chl-a) was in summer, while the lowest (5.92 µg/L Chl-a) was in winter. Excessive nutrient inputs from agricultural runoff during the rainy season were recorded, highlighting the need for continuous monitoring, especially during peak productivity, to mitigate eutrophication risks. Recommendations include optimizing agricultural practices to reduce nutrient inputs and implementing integrated water resource management strategies to preserve the reservoir's ecological quality. This research provides valuable information for decision-makers and environmental managers aiming to improve water quality and protect aquatic biodiversity in Morocco.

Keywords

Main Subjects


Anderson, S. I., Franzè, G., Kling, J. D., Wilburn, P., Kremer, C. T., Menden‐Deuer, S., Litchman, E., Hutchins, D. A., & Rynearson, T. A. (2022). The interactive effects of temperature and nutrients on a spring phytoplankton community. Limnology and Oceanography, 67(3), 634‑645. https://doi.org/10.1002/lno.12023
Arief, M. C. W., Herawati, H., & Rahmawati, R. (2022). Determination of Trophic Status Based on Chlorophyll-a in Cikidang River Pangandaran, West Java–Indonesia. Asian Journal of Fisheries and Aquatic Research, 19(6), 37-44  
Bahouar, E. H., Abba, E. H., Loukili, A., Loubna, M., & Karim, K. 2024. Note on the Diversity of Freshwater Fish Parasites in the Mediterranean Basin: Case of the Barbus Genus. Egyptian Journal of Aquatic Biology and Fisheries, 28(4), 821-832. https://doi.org/10.21608/ejabf.2024.369533
Bardaoui M. H. E., BERDAI Mohamed., 2011 « Adaptation du système eau-énergie au changement climatique : Etude nationale - Maroc, ».
Chen, R., Ju, M., Chu, C., Jing, W., & Wang, Y. (2018). Identification and Quantification of Physicochemical Parameters Influencing Chlorophyll-a Concentrations through Combined Principal Component Analysis and Factor Analysis: A Case Study of the Yuqiao Reservoir in China. Sustainability, 10(4), Article 4. https://doi.org/10.3390/su10040936
Cheraghpour-Ahmadmahmoodi, N., Saadat, M., Zamani-Ahmadmahmoodi, R., & Avokh, A. (2024). A four-season exploration of surface water quality and trophic status in the highly dynamic waters of Karun-4 Dam Lake, SW Iran. Applied Water Science, 14(7), 158. https://doi.org/10.1007/s13201-024-02222-2  
El Orfi, Tarik., Ghadbane, Omar., El Ghachi, Mohamed et Lebaut, Sébastien., 2020. Variabilité des précipitations dans le bassin versant de l’oued Oum ErRbia en amont du barrage Ahmed El Hansali.
Fernández-González, C., Tarran, G. A., Schuback, N., Woodward, E. M. S., Arístegui, J., & Marañón, E. (2022). Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic. Communications Biology, 5(1), 1035. https://doi.org/10.1038/s42003-022-03971-z
Gerhard, M., Koussoroplis, A. M., Hillebrand, H., & Striebel, M. (2019). Phytoplankton community responses to temperature fluctuations under different nutrient concentrations and stoichiometry. Ecology, 100(11), e02834. https://doi.org/10.1002/ecy.2834
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R.
Kim, H. I., Kim, D., Mahdian, M., Salamattalab, M. M., Bateni, S. M., & Noori, R. (2024). Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems. Environmental Pollution, 355, 124242
Li, H., Jing, Y., Zhang, H., Shang, X., Duan, L., Li, H., ... & Li, Z. (2024). Human-Altered Water and Carbon Cycles in the Lake Yangzong Basin since the Yuan Dynasty. Water, 16(9), 1271. https://doi.org/10.3390/w16091271
Martins, O., Oyekanmi., Ekemini, Richard, Mbossoh. (2018). Dams and Sustainable Development Goals: A Vital Interplay for Sustainability. Journal of environment and earth science, 8(4) :1-11.
McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN (2nd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9780429029608
Modabberi, A., Noori, R., Madani, K., Ehsani, A. H., Mehr, A. D., Hooshyaripor, F., & Kløve, B. (2020). Caspian Sea is eutrophying: The alarming message of satellite data. Environmental Research Letters, 15(12), 124047.
Moura, L. C. dos S., Santos, S. M. dos, Souza, C. A. de, Santos, C. R. A. dos, & Bortolini, J. C. (2021). Phytoplankton richness and abundance in response to seasonality and spatiality in a tropical reservoir. Acta Limnologica Brasiliensia, 33, e13. https://doi.org/10.1590/S2179-975X11419
Mukhethwa Judy Mukwevho, Dheepak Maharajh, & Evans M. Nkhalambayausi Chirwa. (2020). (PDF) Evaluating the Effect of pH, Temperature, and Hydraulic Retention Time on Biological Sulphate Reduction Using Response Surface Methodology. https://doi.org/10.3390/w12102662 
Naderian, D., Noori, R., Kim, D., Jun, C., Bateni, S. M., Woolway, R. I., ... & Maberly, S. C. (2025). Environmental controls on the conversion of nutrients to chlorophyll in lakes. Water Research, 274, 123094. https://doi.org/10.1016/j.watres.2025.123094 
Pinay G., Gascuel C., Ménesguen A., Souchon Y., Le Moal M., Levain A., Moatar F., Pannard A., Souchu P., 2017. L’eutrophisation : manifestations, causes, conséquences et prédictibilité. Synthèse de l’Expertise scientifique collective CNRS - Ifremer INRA –Irstea (France), 148 pages.
Qiao, Li. (2024). 2. Exploring the Interactions of Climate Change, Freshwater Supply, and Environmental Balance. Highlights in Science Engineering and Technology, https://doi: 10.54097/nddpfd14 
REEM, 2020. Rapport sur l’état de l’environnement du Maroc, ministère de l’Aménagement du Territoire, de l’Urbanisme, de l’habitat et de l’environnement.
Rodier, J., Legube, B., & Merlet, N. (2016). L’analyse de l’eau-10e éd. Dunod. 
Robert, J., Rolls., Robert, J., Rolls., Jani, Heino., Darren, Ryder., Bruce, C., Chessman., Ivor, Growns., Ross, M., Thompson., Keith, B., Gido. (2018). Scaling biodiversity responses to hydrological regimes. Biological Reviews, 93(2):971-995. https://doi: 10.1111/BRV.12381 
Saravani, M. J., Noori, R., Jun, C., Kim, D., Bateni, S. M., Kianmehr, P., & Woolway, R. I. (2025). Predicting Chlorophyll-a concentrations in the world’s largest lakes using Kolmogorov-Arnold networks. Environmental Science & Technology, 59(3), 1801-1810
Ryding, S.O., Rast, W., 1994. The Control of Eutrophication of Lakes and Reservoirs. UNESCO, 281pp.
Seung-Hee, Kim., Chung-Sook, Kim., Dong-Hun, Lee. (2024). 2. Discriminative characteristics of hydrochemical components and sedimentary organic matter in Korean coastal aquaculture systems during summer. Frontiers in Marine Science, https://doi : 10.3389/fmars.2024.1473271
Sitote, Y. M., & Gebremedhine, M. G. (2024). Comprehensive Review of Eutrophication in Freshwater Ecosystems: Causes, Effects, Assessment, and Management Strategies. https://doi:10.20944/preprints202409.0704.v1 
V., S., Bharti., A., B., Inamdar., C., S., Purushothaman., Vinod, K., Yadav. (2018). Soft computing and statistical technique - Application to eutrophication potential modelling of Mumbai coastal area.   
Wallace, J., Champagne, P., & Hall, G. (s. d.). Time series relationships between chlorophyll-a, dissolved oxygen, and pH in three facultative wastewater stabilization ponds. https://doi.org/10.1039/C6EW00202A
World Health Organization (Éd.). (2022). Guidelines for drinking-water quality (Fourth edition incorporating the first and second addenda). World Health Organization.
Zhao, W., Zhao, Y., Wang, Q., Zheng, M., Wei, J., & Wang, S. (2016). The community structure and seasonal dynamics of plankton in Bange Lake, northern Tibet, China. Chinese Journal of Oceanology and Limnology, 34(6), Article 6. https://doi.org/10.1007/s00343-016-5131-0
Ирина, Леонидовна, Григорьева. (2023). 4. Hydrometeorological conditions as the factor of formation of hydrochemical regime of water of the uglich reservoir in summertime. https://doi: 10.26456/2226-7719-2023-1-16-25