Banerjee, T., Singh, S. B., & Srivastava, R. K. (2011). Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos. Res., 99(3–4), 505–517.
Barthwal, A., Acharya, D., & Lohani, D. (2023). Prediction and analysis of particulate matter (PM2.5 and PM10) concentrations using machine learning techniques. J. Ambient Intell. Humaniz. Comput., 14(3), 1323–1338.
Breiman, L. (2001). Random forests. Mach. Learn., 45, 5–32.
Bruno, F., Cocchi, D., & Trivisano, C. (2004). Forecasting daily high ozone concentrations by classification trees. Environmetrics, 15(2), 141–153.
Carslaw, D. C., & Taylor, P. J. (2009). Analysis of air pollution data at a mixed source location using boosted regression trees. Atmos. Environ., 43(22–23), 3563–3570.
Chang, Y. S., Chiao, H. T., Abimannan, S., Huang, Y. P., Tsai, Y. T., & Lin, K. M. (2020). An LSTM-based aggregated model for air pollution forecasting. Atmos. Pollut. Res., 11(8), 1451–1463.
Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., ... & Hoek, G. (2019). A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environ. Int., 130, 104934.
Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (pp. 785–794).
Cortina–Januchs, M. G., Quintanilla–Dominguez, J., Vega–Corona, A., & Andina, D. (2015). Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico. Atmos. Pollut. Res., 6(4), 626–634.
Department of Health and Human Services. (1997, July 18). Protection of human subjects; reports of the President’s Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research. Fed. Regist., 62(138), 38477–38480. https://www.govinfo.gov/content/pkg/FR-1997-07-18/pdf/97-18577.pdf
Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., & Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmos. Chem. Phys., 18(9), 6223–6239.
Gupta, P., Zhan, S., Mishra, V., Aekakkararungroj, A., Markert, A., Paibong, S., & Chishtie, F. (2021). Machine learning algorithm for estimating surface PM2.5 in Thailand. Aerosol Air Qual. Res., 21(11), 210105.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2013). Multivariate data analysis (8th ed.). Pearson Education Limited.
James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in Python. Springer International.
Jia, M., Cheng, X., Zhao, T., Yin, C., Zhang, X., Wu, X., ... & Zhang, R. (2019). Regional air quality forecast using a machine learning method and the WRF model over the Yangtze River Delta, East China. Aerosol Air Qual. Res., 19(7), 1602–1613.
Kim, B. Y., Lim, Y. K., & Cha, J. W. (2022). Short-term prediction of particulate matter (PM10 and PM2.5) in Seoul, South Korea using tree-based machine learning algorithms. Atmos. Pollut. Res., 13(10), 101547.
Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stoch. Environ. Res. Risk Assess., 24, 751–760.
Li, Y., Sha, Z., Tang, A., Goulding, K., & Liu, X. (2023). The application of machine learning to air pollution research: A bibliometric analysis. Ecotoxicol. Environ. Saf., 257, 114911.
Liaw, A. (2002). Classification and regression by randomForest. R News, 2(3).
Ma, J., Yu, Z., Qu, Y., Xu, J., & Cao, Y. (2020). Application of the XGBoost machine learning method in PM2.5 prediction: A case study of Shanghai. Aerosol Air Qual. Res., 20(1), 128–138.
Napi, N. N. L. M., Mohamed, M. S. N., Abdullah, S., Mansor, A. A., Ahmed, A. N., & Ismail, M. (2020, December). Multiple linear regression (MLR) and principal component regression (PCR) for ozone (O3) concentrations prediction. In IOP Conf. Ser.: Earth Environ. Sci. (Vol. 616, No. 1, p. 012004). IOP Publishing.
Pan, B. (2018, February). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. In IOP Conf. Ser.: Earth Environ. Sci. (Vol. 113, p. 012127). IOP Publishing.
Reyes, H. J., Vaquera, H., & Villaseñor, J. A. (2010). Estimation of trends in high urban ozone levels using the quantiles of GEV. Environmetrics, 21(5), 470–481.
Russo, A., Lind, P. G., Raischel, F., Trigo, R., & Mendes, M. (2015). Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos. Pollut. Res., 6(3), 540–549.Saravani, M. J., Noori, R., Jun, C., Kim, D., Bateni, S. M., Kianmehr, P., & Woolway, R. I. (2025). Predicting Chlorophyll-a concentrations in the world’s largest lakes using Kolmogorov–Arnold networks. Environ. Sci. Technol., 59(3), 1801–1810.
Saravani, M. J., Saadatpour, M., & Shahvaran, A. R. (2024). A web GIS based integrated water resources assessment tool for Javeh Reservoir. Expert Syst. Appl., 252, 124198.
Sharma, P., Chandra, A., & Kaushik, S. C. (2009). Forecasts using Box–Jenkins models for the ambient air quality data of Delhi City. Environ. Monit. Assess., 157, 105–112.
Sihag, P., Kumar, V., Afghan, F. R., Pandhiani, S. M., & Keshavarzi, A. (2019). Predictive modeling of PM2.5 using soft computing techniques: Case study—Faridabad, Haryana, India. Air Qual. Atmos. Health, 12(12), 1511–1520.
Suleiman, A., Tight, M. R., & Quinn, A. D. (2016). Hybrid neural networks and boosted regression tree models for predicting roadside particulate matter. Environ. Model. Assess., 21, 731–750.
Venkataraman, V., Prasad, S., Aswathanarayana, B., Barigidad, S., & Nayak, V. (2020). Development of time series models for various pollutants in Bangalore city using the Akaike information criterion. Eng. Appl. Sci. Res., 47(3), 249–263.
Wang, S., Ren, Y., & Xia, B. (2023). PM2.5 and O3 concentration estimation based on interpretable machine learning. Atmos. Pollut. Res., 14(9), 101866.