Akima, H. (1970) A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. Journal of the ACM (JACM). 17 (4). doi:10.1145/321607.321609.
Ali-Taleshi, M.S., Bakhtiari, A.R., Liu, N. & Hopke, P.K. (2025) Characterization and Transport Pathways of High PM2.5 Pollution Episodes During 2015–2021 in Tehran, Iran. Aerosol and Air Quality Research. 25 (5), 1–18. doi:10.1007/S44408-025-00016-Y/METRICS.
Alotaibi, E. & Nassif, N. (2024) Artificial intelligence in environmental monitoring: in-depth analysis. Discover Artificial Intelligence. 4 (1). doi:10.1007/S44163-024-00198-1.
Amiri, Z. & Zare Shahne, M. (2025) Modeling PM2.5 concentration in tehran using satellite-based Aerosol optical depth (AOD) and machine learning: Assessing input contributions and prediction accuracy. Remote Sensing Applications: Society and Environment. 38, 101549. doi:10.1016/J.RSASE.2025.101549.
Anggraini, T.S., Irie, H., Sakti, A.D. & Wikantika, K. (2024) Machine learning-based global air quality index development using remote sensing and ground-based stations. Environmental Advances. 15, 100456. doi:10.1016/J.ENVADV.2023.100456.
Arhami, M., Hosseini, V., Zare Shahne, M., Bigdeli, M., Lai, A. & Schauer, J.J. (2017) Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmospheric Environment. 153. doi:10.1016/j.atmosenv.2016.12.046.
Arhami, M., Shahne, M.Z., Hosseini, V., Roufigar Haghighat, N., Lai, A.M. & Schauer, J.J. (2018) Seasonal trends in the composition and sources of PM2.5 and carbonaceous aerosol in Tehran, Iran. Environmental Pollution. 239. doi:10.1016/j.envpol.2018.03.111.
Artiola, J.F., Pepper, I.L. & Brusseau, M.L. (2004) Environmental Monitoring and Characterization. doi:10.1016/B978-0-12-064477-3.X5000-0.
Austin, P.C., White, I.R., Lee, D.S. & van Buuren, S. (2021) Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Canadian Journal of Cardiology.37 (9). doi:10.1016/j.cjca.2020.11.010.
Bagheri, H. (2022) A machine learning-based framework for high resolution mapping of PM2.5 in Tehran, Iran, using MAIAC AOD data. Advances in Space Research. 69 (9). doi:10.1016/j.asr.2022.02.032.
Bourbour, S., Zare Shahne, M. & Safarkhanloo, H. (2025) Non-Gaussian Misalignment Regression Model Development Based on On-Site and Satellite Meteorological and Air Pollutant Data in Tehran, Iran. International Journal of Environmental Research. 19 (4), 1–22. doi:10.1007/S41742-025-00797-5/METRICS.
Ceccato, P., Fernandes, K., Ruiz, D. & Allis, E. (2014) Climate and environmental monitoring for decision making. Earth Perspectives. 1 (1). doi:10.1186/2194-6434-1-16.
Chadalavada, S., Faust, O., Salvi, M., Seoni, S., Raj, N., Raghavendra, U., Gudigar, A., Barua, P.D., Molinari, F. & Acharya, R. (2025) Application of artificial intelligence in air pollution monitoring and forecasting: A systematic review. Environmental Modelling & Software. 185, 106312. doi:10.1016/J.ENVSOFT.2024.106312.
Cordier, T., Alonso-Sáez, L., Apothéloz-Perret-Gentil, L., Aylagas, E., Bohan, D.A., Bouchez, A., Chariton, A., Creer, S., Frühe, L., Keck, F., Keeley, N., Laroche, O., Leese, F., Pochon, X., Stoeck, T., Pawlowski, J. & Lanzén, A. (2021) Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. In: Molecular Ecology. 2021 p. doi:10.1111/mec.15472.
Delbari, S.H., Zare Shahne, M. & Hosseini, V. (2024) An Analysis of Primary Contributing Sources to the PM2.5 Composition in a Port City in Canada Influenced by Traffic, Marine, and Wildfire Emissions. Atmospheric Environment. 334, 120712. doi:10.1016/J.ATMOSENV.2024.120712.
Ditria, E.M., Buelow, C.A., Gonzalez-Rivero, M. & Connolly, R.M. (2022) Artificial intelligence and automated monitoring for assisting conservation of marine ecosystems: A perspective. Frontiers in Marine Science.9. doi:10.3389/fmars.2022.918104.
Dressing, S.A. & Meals, D.W. (2010) Monitoring and evaluating nonpoint source watershed projects. United States Environmental Protection Agency Office of Water. (May).
Duan, Y., Edwards, J.S. & Dwivedi, Y.K. (2019) Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management. 48. doi:10.1016/j.ijinfomgt.2019.01.021.
Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D. & Alsdorf, D.E. (2007) The shuttle radar topography mission. Reviews of Geophysics. 45 (2). doi:10.1029/2005RG000183.
Hameed, M., Sharqi, S.S., Yaseen, Z.M., Afan, H.A., Hussain, A. & Elshafie, A. (2017) Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia. Neural Computing and Applications. 28. doi:10.1007/s00521-016-2404-7.
Heger, M., Sarraf, M. & Heger, M.P. (2018) Air Pollution in Tehran: Health Costs, Sources, and Policies. Air Pollution in Tehran. doi:10.1596/29909.
Ibrahim, A., Wayayok, A., Shafri, H.Z.M. & Toridi, N.M. (2024) Remote Sensing Technologies for Unlocking New Groundwater Insights: A Comprehensive Review. Journal of Hydrology X. 23, 100175. doi:10.1016/J.HYDROA.2024.100175.
Järvi, L., Kurppa, M., Kuuluvainen, H., Rönkkö, T., Karttunen, S., Balling, A., Timonen, H., Niemi, J. V. & Pirjola, L. (2023) Determinants of spatial variability of air pollutant concentrations in a street canyon network measured using a mobile laboratory and a drone. Science of the Total Environment. 856. doi:10.1016/j.scitotenv.2022.158974.
Javadi, M.A., Shahne, M.Z. & Amiri, Z. (2025) Integration of Sentinel-5P Satellite Data and Machine Learning for Spatiotemporal Prediction of NO2 in Delhi: Impacts of COVID-19 Lockdown. Atmospheric Pollution Research. 102702. doi:10.1016/J.APR.2025.102702.
Javan, F.D., Samadzadegan, F. & Toosi, A. (2025) Air pollution observation—bridging spaceborne to unmanned airborne remote sensing: a systematic review and meta-analysis. Air Quality, Atmosphere & Health 2025. 1–69. doi:10.1007/S11869-025-01771-Y.
Jollife, I.T. & Cadima, J. (2016) Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.374 (2065). doi:10.1098/rsta.2015.0202.
Kafi, A.M., Hosseinipoor, M., Zare Shahne, M., Jamaat, A., Kafi, A.M., Hosseinipoor, M., Zare Shahne, M. & Jamaat, A. (2024) Integrating Sentinel-5P Satellite Data and Machine Learning Algorithms for Air Quality Index Prediction in Tehran: A Comprehensive Study on Factors Influencing Air Quality. EGUGA. 4506. doi:10.5194/EGUSPHERE-EGU24-4506.
Kamali, N., Zare Shahne, M. & Arhami, M. (2015) Implementing spectral decomposition of time series data in artificial neural networks to predict air pollutant concentrations. Environmental Engineering Science. 32 (5). doi:10.1089/ees.2014.0350.
Kim, M. kyu, Chang, J.W., Park, K. & Yang, D.R. (2022) Comprehensive assessment of the effects of operating conditions on membrane intrinsic parameters of forward osmosis (FO) based on principal component analysis (PCA). Journal of Membrane Science. 641. doi:10.1016/j.memsci.2021.119909.
Koçak, E. (2025) Comprehensive evaluation of machine learning models for real-world air quality prediction and health risk assessment by AirQ+. Earth Science Informatics. 18 (3), 1–17. doi:10.1007/S12145-025-01941-7/FIGURES/4.
Laña, I., Olabarrieta, I. (Iñaki), Vélez, M. & Del Ser, J. (2018) On the imputation of missing data for road traffic forecasting: New insights and novel techniques. Transportation Research Part C: Emerging Technologies. 90. doi:10.1016/j.trc.2018.02.021.
Lever, J., Krzywinski, M. & Altman, N. (2017) Points of Significance: Principal component analysis. Nature Methods.14 (7). doi:10.1038/nmeth.4346.
Ma, J., Cheng, J.C.P., Jiang, F., Chen, W., Wang, M. & Zhai, C. (2020a) A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy and Buildings. 216. doi:10.1016/j.enbuild.2020.109941.
Ma, J., Li, Z., Cheng, J.C.P., Ding, Y., Lin, C. & Xu, Z. (2020b) Air quality prediction at new stations using spatially transferred bi-directional long short-term memory network. Science of the Total Environment. 705. doi:10.1016/j.scitotenv.2019.135771.
Maryam Zare, S., Amir, S. & Fatemeh, N. (2022) A hybrid deep learning model to forecast air quality data based on COVID-19 outbreak in Mashhad, Iran. Annals of Civil and Environmental Engineering. 6 (1). doi:10.29328/journal.acee.1001035.
Méndez, M., Merayo, M.G. & Núñez, M. (2023) Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review. 56 (9). doi:10.1007/s10462-023-10424-4.
Mishra, D. & Goyal, P. (2015) Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra. Atmospheric Pollution Research. 6 (1). doi:10.5094/APR.2015.012.
Mohammadi, H., Cohen, D., Babazadeh, M. & Rokni, L. (2012) The Effects of Atmospheric Processes on Tehran Smog Forming. Iranian Journal of Public Health. 41 (5), 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC3468992/.
Moshenberg, S., Lerner, U. & Fishbain, B. (2015) Spectral methods for imputation of missing air quality data. Environmental Systems Research. 4 (1). doi:10.1186/s40068-015-0052-z.
Noori, R., Hoshyaripour, G., Ashrafi, K. & Araabi, B.N. (2010) Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment. 44 (4). doi:10.1016/j.atmosenv.2009.11.005.
Pena, M., Ortega, P. & Orellana, M. (2019) A novel imputation method for missing values in air pollutant time series data. In: 2019 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2019. 2019 p. doi:10.1109/LA-CCI47412.2019.9037053.
Ringnér, M. (2008) What is principal component analysis? Nature Biotechnology.26 (3). doi:10.1038/nbt0308-303.
Sarker, I.H. (2021a) Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Computer Science.2 (5). doi:10.1007/s42979-021-00765-8.
Sarker, I.H. (2021b) Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science.2 (3). doi:10.1007/s42979-021-00592-x.
Savić, M., Mihajlović, I., Arsić, M. & Živković, Ž. (2014) Adaptive-network-based fuzzy inference system (ANFIS) modelbased prediction of the surface ozone concentration. Journal of the Serbian Chemical Society. 79 (10). doi:10.2298/JSC140126039S.
Shahne, M.Z., Arhami, M., Hosseini, V. & Al Haddad, E. (2022a) Particulate emissions of real-world light-duty gasoline vehicle fleet in Iran. Environmental Pollution. 292. doi:10.1016/j.envpol.2021.118303.
Shahne, M.Z., Sezavar, A., Najibi, F. & Khoshand, A. (2022b) Automatic Image-based Air Quality Detection based on Deep Convolutional Neural Networks and Histogram Analysis. 255. doi:10.34894/VQ1DJA.
Shams, S.R., Jahani, A., Kalantary, S., Moeinaddini, M. & Khorasani, N. (2021) Artificial intelligence accuracy assessment in NO2 concentration forecasting of metropolises air. Scientific Reports. 11 (1). doi:10.1038/s41598-021-81455-6.
Subramaniam, S., Raju, N., Ganesan, A., Rajavel, N., Chenniappan, M., Prakash, C., Pramanik, A., Basak, A.K. & Dixit, S. (2022) Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review. Sustainability (Switzerland).14 (16). doi:10.3390/su14169951.
Thomson, M.C., Connor, S.J., Zebiak, S.E., Jancloes, M. & Mihretie, A. (2011) Africa needs climate data to fight disease. Nature.471 (7339). doi:10.1038/471440a.
United Nations (2022) United Nations Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. Department of Economic and Social Affairs Population Division. 3 (UN DESA/POP/2022/TR/NO. 3).
Waymond, R. (2020) Artificial Intelligence in a Throughput Model. Artificial Intelligence in a Throughput Model. doi:10.1201/9780429266065.
Yeganeh, B., Hewson, M.G., Clifford, S., Tavassoli, A., Knibbs, L.D. & Morawska, L. (2018) Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environmental Modelling and Software. 100. doi:10.1016/j.envsoft.2017.11.031.
Yu, Y., Yu, J.J.Q., Li, V.O.K. & Lam, J.C.K. (2020) A Novel Interpolation-SVT Approach for Recovering Missing Low-Rank Air Quality Data. IEEE Access. 8. doi:10.1109/ACCESS.2020.2988684.
Zare Shahne, M., Haghighat, N.R., Hosseini, V., Uzu, G., Taheri, A., Darfeuil, S., Ginot, P., Besombes, J.L., Pin, M., Jaffrezo, J.L. & Shamloo, A. (2025) Seasonal variation of the chemical content and source identification of PM2.5 in a mixed landuse in Iran. International Journal of Environmental Science and Technology. 22 (6), 4157–4172. doi:10.1007/S13762-024-06138-X/METRICS.
Zhou, X.H. (2020) Challenges and strategies in analysis of missing data. Biostatistics and Epidemiology. 4 (1). doi:10.1080/24709360.2018.1469810.