Electrospun Nanofiber Membranes from Recycled Acrylic for High-Salinity Brine Desalination via Air Gap Membrane Distillation

Document Type : Original Research Paper

Authors

Department of Chemical Engineering, College of Engineering, University of Baghdad, P.O. Box 47024, Baghdad, Iraq

10.22059/poll.2025.395374.2937

Abstract

This study reports the fabrication and performance evaluation of electrospun nanofiber membranes made from recycled acrylic (polymethyl methacrylate (PMMA)) for use in air gap membrane distillation (AGMD) systems targeting high-salinity brine desalination. Scanning Electron Microscopy (SEM) confirmed that the membranes possessed a uniform, highly porous nanofibrous structure with interconnected pores conducive to vapor transport. Atomic Force Microscopy (AFM) revealed a rough surface morphology, while water contact angle measurements exceeding 121° indicated excellent hydrophobicity, critical for effective liquid, vapor separation. Fourier-transform infrared spectroscopy (FTIR) verified the preservation of key ester functional groups, confirming the chemical integrity of the recycled acrylic. Performance testing was conducted under various feed temperatures (45–65 °C), flow rates (0.2–0.4 L/min), NaCl concentrations (35–140 g/L), and air gap distances (6–9 mm). The membranes achieved a maximum flux of 9.2 kg/m²·h at 65 °C and 0.4 L/min. As expected, higher salt concentrations reduced flux due to lower vapor pressure and increased concentration polarization. Despite variations in operating conditions, salt rejection consistently exceeded 99.994%, demonstrating excellent selectivity and operational stability. These results highlight the potential of recycled acrylic-based nanofiber membranes as a sustainable and high-performance solution for brine desalination using AGMD.

Keywords

Main Subjects


Alftessi, S. A., Othman, M. H. D., Adam, M. R. B., Farag, T. M., Tai, Z. S., Raji, Y. O., & Bakar, S. A. (2022). Hydrophobic silica sand ceramic hollow fiber membrane for desalination via direct contact membrane distillation. Alexandria Engineering Journal, 61(12), 9609-9621.https://doi.org/10.1016/j.aej.2022.03.044
Abdulhussain, R., Adebisi, A., Conway, B.R., & Asare-Addo, K., (2023). Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. J. Drug Deliv Sci Technol., 90. https://doi.org/10.1016/j.jddst.2023.105156
Abid, M. Bin, Wahab, R.A., Salam, M.A., Gzara, L., & Moujdin, I.A. (2023). Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon, 9 (2). https://doi.org/10.1016/j.heliyon.2023.e12810
Adewole, J. K., Al Maawali, H. M., Jafary, T., Firouzi, A., & Oladipo, H. (2022). A review of seawater desalination with membrane distillation: material development and energy requirements. Water Supply, 22(12), 8500-8526. https://doi.org/10.2166/ws.2022.337
Albiladi, A., Gzara, L., Organji, H., Alkayal, N.S., & Figoli, A. (2023). Electrospun Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) Nanofiber Membranes for Brine Treatment via Membrane Distillation. Polymers (Basel)., 15. https://doi.org/10.3390/polym15122706
Al-Harby, N.F., El Batouti, M., Elewa, M.M. (2023). A Comparative Analysis of Pervaporation and Membrane Distillation Techniques for Desalination Utilising the Sweeping Air Methodology with Novel and Economical Pervaporation Membranes. Polymers (Basel)., 15. https://doi.org/10.3390/polym15214237
Ali, U., Karim, K. J. B. A., & Buang, N. A. (2015). A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews., 55(4), 678-705. https://doi.org/10.1080/15583724.2015.1031377
Alkarbouly, S.M., & Waisi, B.I. (2022). Fabrication of Electrospun Nanofibers Membrane for Emulsified Oil Removal from Oily Wastewater. Baghdad Science Journal., 19, 1238–1248. https://doi.org/10.21123/bsj.2022.6421
Al-Sairfi, H., Koshuriyan, M.Z.A., Ahmed, M. (2023). Performance feasibility study of direct contact membrane distillation systems in the treatment of seawater and oilfield-produced brine: the effect of hot- and cold-channel depth. Desalination Water Treat., 313, 26–36. https://doi.org/10.5004/dwt.2023.29942
Chakka, A.K., Muhammed, A., Sakhare, P.Z., & Bhaskar, N. (2017). Poultry Processing Waste as an Alternative Source for Mammalian Gelatin: Extraction and Characterization of Gelatin from Chicken Feet Using Food Grade Acids. Waste Biomass Valorization., 8, 2583–2593. https://doi.org/10.1007/s12649-016-9756-1
Chigome, S., Darko, G., & Torto, N. (2011). Electrospun nanofibers as sorbent material for solid phase extraction. Analyst., 136(14), 2879-2889. https://doi.org/10.1039/c1an15228a
Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach, in: Encyclopedia of Analytical Chemistry. Wiley. https://doi.org/10.1002/9780470027318.a5606
Criscuoli, A. (2021). Membrane distillation process. Membranes (Basel)., 11(2), 144. https://doi.org/10.3390/membranes11020144
Defor, C., Chou, & S.F. (2024). Electrospun polytetrafluoroethylene (PTFE) fibers in membrane distillation applications. AIMS Mater Sci., 11, 1179–1198. https://doi.org/10.3934/MATERSCI.2024058
Fang, J., Zhang, L., Sutton, D., Wang, X., & Lin, T. (2012). Needleless melt‐electrospinning of polypropylene nanofibres. Journal of nanomaterials, 2012(1), 382639. https://doi.org/10.1155/2012/382639
Feng, C., Khulbe, K.C., Matsuura, T., Gopal, R., Kaur, S., Ramakrishna, S., & Khayet, M. (2008). Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J. Memb Sci., 311, 1–6. https://doi.org/10.1016/j.memsci.2007.12.026
Fernandes, I.S., Domingos, M.G., Costa, M.F., Santos, R.J., & Lopes, J.C.B. (2025). Hydrate-based desalination process using CO2 as hydrate forming agent–Modelling and techno-economic analysis. Desalination., 599. https://doi.org/10.1016/j.desal.2024.118426
Hardikar, M., Felix, V., Presson, L.K., Rabe, A.B., Ikner, L.A., &Achilli, A. (2023). Pore Flow and Solute Rejection in Pilot-Scale Air-Gap Membrane Distillation. J. Memb Sci., 676, 121544. https://doi.org/10.1016/j.memsci.2023.121544
Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci Technol., 63, 2223–2253. https://doi.org/10.1016/S0266-3538(03)00178-7
Islam, M. S., Ang, B. C., Andriyana, A., & Afifi, A. M. (2019). A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 1(10), 1248. https://doi.org/10.1007/s42452-019-1288-4
Kariman, H., Mohammed, H. A., Zargar, M., & Khiadani, M. (2025). Performance comparison of flat sheet and hollow fibre air gap membrane distillation: A mathematical and simulation modelling approach. Journal of Membrane Science, 721, 123836. https://doi.org/10.1016/j.memsci.2025.123836
Kebria, M. R. S., Rahimpour, A., Salestan, S. K., Seyedpour, S. F., Jafari, A., Banisheykholeslami, F., & Kiadeh, N. T. H. (2020). Hyper-branched dendritic structure modified PVDF electrospun membranes for air gap membrane distillation. Desalination, 479, 114307. https://doi.org/10.1016/j.desal.2019.114307
Liao, S. W., Lin, C. I., & Wang, L. H. (2011). Kinetic study on lead (II) ion removal by adsorption onto peanut hull ash. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 166-172. https://doi.org/10.1016/j.jtice.2010.04.009
Liu, S., Jun, S. C., Zhang, S., Wang, F., Yu, J., & Ding, B. (2024). Advancements in electrospun nanofibrous membranes for improved waterproofing and breathability. Macromolecular Materials and Engineering, 309(9), 2300312. https://doi.org/10.1002/mame.202300312
Matheswaran, M., Kwon, T. O., Kim, J. W., & Moon, I. S. (2007). Factors affecting flux and water separation performance in air gap membrane distillation. Journal of Industrial and Engineering Chemistry-Seoul-, 13(6), 965.
Navarro-Tovar, R., Qiu, B., Martin, P., Gorgojo, P., & Perez-Page, M. (2025). Advanced desalination performance using PVDF electrospun nanofiber membranes across multiple membrane distillation configuration. Desalination, 598, 118425. https://doi.org/10.1016/j.desal.2024.118425
Nayeri, D., & Mousavi, S. A. (2024). A critical review on the effect of silanization on the ceramic membrane distillation (CMD): performance, operational factors, and characterization. Applied Water Science, 14(6), 114. https://doi.org/10.1007/s13201-024-02178-3
Onsekizoglu, P. (2012). Membrane Distillation: Principle, Advances, Limitations and Future Prospects in Food Industry, (p. 282). IntechOpen.
Ren, J., Wang, X., Zhao, L., Li, M., & Yang, W. (2021). Effective removal of dyes from aqueous solutions by a gelatin hydrogel. Journal of Polymers and the Environment, 29(11), 3497-3508. https://doi.org/10.1007/s10924-021-02136-z
Safi, N.N., Ibrahim, S.S., Zouli, N., Majdi, H.S., Alsalhy, Q.F., Drioli, E., Figoli, A. (2020). A systematic framework for optimizing a sweeping gas membrane distillation (SGMD). Membranes (Basel), 10, 1–18. https://doi.org/10.3390/membranes10100254
Safi, N.N., & Waisi, B.I. (2023). Preparation of electrospun double-layer PVDF:PMMA membrane non-woven nanofibers for desalination by membrane distillation process. Desalination Water Treatment, 314, 49–58. https://doi.org/10.5004/dwt.2023.30063
Shahu, V. T., & Thombre, S. B. (2019). Air gap membrane distillation: A review. Journal of Renewable and Sustainable Energy, 11(4). https://doi.org/10.1063/1.5063766
Shahzad, M.W., Burhan, M., Ybyraiymkul, D., & Ng, K.C. (2019). Desalination processes’ efficiency and future roadmap. Entropy, 21. https://doi.org/10.3390/e21010084
Soumbati, Y., Bouatou, I., Abushaban, A., Belmabkhout, Y., & Necibi, M. C. (2025). Review of membrane distillation for desalination applications: Advanced modeling, specific energy consumption, and water production cost. Journal of Water Process Engineering, 71, 107296. https://doi.org/10.1016/j.jwpe.2025.107296
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557-569. https://doi.org/10.1002/app.21481
Woo, Y. C., Tijing, L. D., Shim, W. G., Choi, J. S., Kim, S. H., He, T., Drioli, E., & Shon, H. K. (2016). Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 520, 99-110. https://doi.org/10.1016/j.memsci.2016.07.049
Xie, Y., Yu, L., & Yu, Y. (2024). Improved desalination performance of fluorinated graphene oxide blended PVDF electrospun nanofiber membrane for air gap membrane distillation. Desalination Water Treatment, 317. https://doi.org/10.1016/j.dwt.2024.100184
Zhang, M., Ahmed, A., & Xu, L. (2023). Electrospun nanofibers for functional food packaging application. Materials, 16(17), 5937. https://doi.org/10.3390/ma16175937
Zhang, Z., Wu, X., Kou, Z., Song, N., Nie, G., Wang, C., Verpoort, F. & Mu, S. (2022). Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal, 428, 131133. https://doi.org/10.1016/j.cej.2021.131133
Zhang, Z., Wu, X., Kou, Z., Song, N., & Nie, G. (2022) Rational design of electrospun nanofiber-typed electrocatalysts for water splitting: A review. Chemical Engineering Journal, 428, p.131133.