Plant-Aid Remediation of Hydrocarbon-Contaminated Sites

Document Type : Review Paper


Assistant Professor, Graduate Faculty of Environment, University of Tehran, Iran



Phytoremediation is an emerging green technology that uses plants and their associated microbes to remediate different environments contaminated with various pollutants. Phytoremediation, as an effective soil remediation technology, has gained popularity in the past ten years both in developed and developing countries. The main goal of the current article is to improve the understanding of phytoremediation of organic pollutants with emphasis on hydrocarbons. To design phytoremediation systems and also enhancement of their efficiency, either in laboratory or in field experiments, there is a serious need for better knowledge of phytoremediation mechanisms and also of factors affecting phytoremediation. In addition to phytoremediation applications, advantages, and limitations, its mechanisms and related new developments have been discussed in this article.


Abhilash, P.C., Jamil, S. and Singh, N. (2009). Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol. Adv., 7, 474-488.
Ali, H., Khan, E. and Sajad, M.A. (2013). Phytoremediation of heavy metals- concepts and applications. Chemosphere, 91 (7), 869-881.
Allard, A.S., Remberger, M. and Neilson, A. (2000). The negative impact of aging on the loss of PAH components in a creosote-contaminated soil. Int. Biodeter. Biodegr., 46, 43-49.
Alvarez-Lopez, V., Prieto-Fernandez, A., Cabello-Conejo, M.I. and Kidd, P.S. (2016). Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Sci. Total Environ. 548, 370-379.
Banks, M.K., Schwab, P., Liu, B., Kulakow, P.A., Smith, J.S. and Kim, R. (2003). The effect of plants on the degradation and toxicity of petroleum contaminants in soil: A field assessment. Adv. Biochem. Eng. Biotech. 78, 75-96.
Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V. and Sharma, K.D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol., 46(1), 7-21.
Burken, J.G. (2003). Uptake and metabolism of organic compounds: green-liver model. In: S.C. McCutcheon and J.L. Schooner (Eds), Phytoremediation: Transformation and Control of Contaminants, New York: Wiley, 59-84.
Castro, S., Davis, L.C. and Erickson, L.E. (2004). Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture. Int. J. Phytoremediation. 6(3), 209-25.
Cebron, A., Beguiristain, T., Faure, P., Norini, M.P., Masfaraud, J.F. and Leyval, C. (2009). Influence of vegetation on the in situ bacterial community and polycyclic aromatic hydrocarbon (PAH) degraders in aged PAH-contaminated or thermal-desorption-treated Soil. Appl. Environ. Microbiol. 75(19), 6322-6330.
Chekol, T., Vough, L. and Chaney, R. (2004). Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ. Int., 30, 799-804.
Chen, P., Pickard, M.A. and Gray, M.R. (2000). Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation, 11, 341-347.
Chigbo, C., Batty, L. and Bartlett, R. (2013). Interactions of copper and pyrene on phytoremediation potential of Brassica juncea in copper–pyrene co-contaminated soil. Chemosphere, 90 (10), 2542-2548.
Cofield, N., Banks, M.K. and Schwab, A.P. (2007). Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation. Environ. Pollut., 145, 60-67.

Cofield, N., Banks, M.K. and Schwab, A.P. (2008). Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Chemosphere, 70 (9), 1644-1652.

Damastri, C., Chiarini, L., Cantale, C., Bevivno, A. and Tabacchioni, S. (1999). Soil type and maize cultivar affect the genetic diversity of maize-associated Burkholderia cepacia populations. Microb. Ecol., 38, 273-284.
Davis, L.C., Erickson, L.E., Narayanan, N. and Zhang, Q. (2003). Modeling and design of phytoremediation. In: S.C. McCutcheon and J.L. Schooner (Eds.), Phytoremediation: Transformation and Control of Contaminants New York: Wiley. 663-694.
Denys, S., Rollin, C., Guillot, F. and Baroudi, H. (2006). In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut., 6, 299-315.
Dietz, A.C. and Schnoor, J.L. (2001). Advances in Phytoremediation. Environ. Health Persp., 109, 163-168.
Doty, S.L., Shang, T.Q., Wilson, A.M., Tangen, J., Westergreen, A.D., Newman, L.A., Strand, S.E. and Gordon, M.P. (2000). Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Appl. Biol. Sci., 97(12), 6287-6291.
Escalante-Espinosa, E., Gallegos-Martınez, M.E., Favela-Torres, E. and Gutierrez-Rojas, M. (2005). Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59, 405-413.
Esteve-Nunez, A., Caballero, A. and Ramos, J.L. (2001). Biological Degradation of 2,4,6-Trinitrotoluene. Microbiol. Mol. Boil. Rev. 65 (3), 335-352.
Grayston, S.J., Wang, S., Campbell, C.D., Edwards, A.C. (1998). Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem., 30, 369-378.
Huang, X.D., El-Alawi, Y., Penrose, D., Glick, B. and Greenberg, B. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130, 465-476.
Hutchinson, S.L., Banks, M.K. and Schwab, A.P. (2001). Phytoremediation of aged petroleum sludge: Effect of inorganic fertilizer. J. Environ. Qual., 30, 395-403.
James, C.A. and Strand, S.E. (2009). Phytoremediation of small organic contaminants using transgenic plants. Curr. Opin. Biotechnol. 20(2), 237-241.
Johnson, D.L., Anderson, D.R. and McGrath, S.P. (2005). Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem., 37 (12), 2334-2336.
Kulakow, P.A., Schwab, A.P. and Banks, M.K. (2000). Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int. J. Phytorem., 2, 297-317.
Leigh, M.B., Fletcher, J.S., Fu, X. and Schmitz, F.J. (2002). Root turnover: An important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ. Sci. Technol., 36, 1579-1583.
Li, J.T., Baker, A.J.M., Ye, Z.H., Wang, H.B. and Shu, W.S. (2012). Phytoextraction of Cd-Contaminated Soils: Current Status and Future Challenges. Crit. Rev. Env. Sci. Tec. 42 (20), 2113-2152.
Liu, H., Meng, F., Tong, Y. and Chi, J. (2014a). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecol. Eng., 73, 380-385.
Liu, R., Xiao, N., Wei, S., Zhao, L. and An, J. (2014b). Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci. Total Environ., 473, 350-358.
Macek, T., Mackova, M. and Kas, J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv., 18, 23-34.
Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J. and Díez, S. (2013). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58-63.
McGuinness, M. and Dowling, D. (2009). Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil. Int. J. Env. Res. Public Health., 6(8): 2226-2247.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut., 165, 195-209.
Miethling, R., Wieland, G., Backhaus, H. and Tebbe, C.C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microb. Ecol., 40, 43-56.

Mitton, F.M., Gonzalez, M., Monserrat, J.M. and Miglioranza, K.S. (2016). Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere, 148, 300-306.

Muratova, A., Hubner, T., Tischer, S., Turkovskaya, O., Möder, M. and Kuschk, P. (2003). Plant–rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int. J. Phytoremediation. 5, 137-151.
Nedunuri, K.V., Govindaraju, R.S., Banks, M.K., Schwab, A.P. and Chen, Z. (2000). Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J. Env. Eng., 126 (6), 483-490.
Negri, M.C., Gatliff, E.G., Quinn, J.J. and Hinchman, R.R. (2003). Root development and rooting at depths. In: S.C. McCutcheon and J.L. Schooner (Eds.), Phytoremediation: Transformation and Control of Contaminants, New York: Wiley. 233-262.
Parrish, D.Z., Banks, M.K. and Schwab, A.P. (2005). Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environmen. Pollut., 137, 187-197.
Peuke, A.D. and Rennenberg, H. (2005). Phytoremediation. EMBO Rep. 6(6), 497-501.
Phillips, C.J., Harris, D., Dollhopf, S.L., Gross, K.L., Prosser, J.I. and Paul, E.A. (2000). Effects of agronomic treatments on structure and function of ammonia-oxidizing communities. Appl. Environ. Microbiol., 66, 5410-5418.
Pilon-Smits, E. (2005). Phytoremediation. Annu. RePlant Biol., 56, 15-39.
Rezek, J., Wiesche, C., Mackova, M., Zadrazil, F. and Macek, T. (2008). The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere, 70 (9), 1603-1608.
Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils: biological, physical and chemical processes. Boston: CRC Press.
Salt, D.E., Smith, R.D. and Raskin, I. (1998). Phytoremediation. Annu. RePlant Physiol. Plant Mol. Biol., 49, 643-668.
Sessitsch, A., Kuffner, M. and Kidd, P. (2013). The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Bio. Biochem. 60, 182-194.
Siciliano, S.D., Germida, J.J., Banks, K. and Greer, C.W. (2003). Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial. Appl. Environ. Microbiol., 69 (1), 483-489.
Singh, O. and Jain, R.K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Appl. Microbiol. Biotechnol., 63, 128-135.
Tassi, E., Barbafieri, M., Cervelli, S., Petruzzelli, G., Pedron, F. and Szymura, I. (2004). Phytoremediation test in PAH contaminated soil. Agrochemica. XL VIII, 73-76.
Thompson, P.L., Ramer, L.A., and Schnoor, J.L. (1998). Uptake and transformation of TNT by hybrid poplar trees. Environ. Sci. Technol., 32, 975-980.
Truu, J., Karme, L., Talpsep, E., Heinaru. E., Vedler, E. and Heinaru, A. (2003). Phytoremediation of soil oil shale waste from the chemical industry. Acta. Biotechnol., 23, 301-307.
US EPA (2000). Introduction to phytoremediation. EPA/600/R-99/107 Report, Washington DC.
Van Aken, B. (2009). Transgenic plants for enhanced phytoremediation of toxic explosives. Curr. Opin. Biotechnol., 20 (22), 231-236.
Xiao, N., Liu, R., Jin, C. and Dai, Y. (2015). Efficiency of five ornamental plant species in the phytoremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecol. Eng., 75, 384-391.
Yu, X. Z., Trapp, S., Zhou, P.H. and Chen, L. (2007). Effect of Temperature on the Uptake and Metabolism of Cyanide by Weeping Willows. Int. J. Phytoremediation., 9(3), 243-255.