Growth-phase dependent biodesulfurization of Dibenzothiophene by Enterobacter sp. strain NISOC-03

Document Type : Original Research Paper


1 Microorganisms Bank, Iranian Biological Resource Center (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran

2 Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran

3 Biotechnology and Biology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran


Petroleum-polluted soil samples from Ahvaz oilfield were enriched, using three methods to detect microorganisms with different dibenzothiophene degradation capabilities. Strain NISOC-03, a nitrate-reducing, oxidase negative, catalase, citrate, and urease positive, gram negative rod, showed interesting dibenzothiophene desulfurization behavior, designated as Entreobacter sp. strain NISOC-03 based on phenotype and genotype analyses. Gas chromatography, biomass measurement, and Gibb’s assay showed that in the presence of benzoate as the carbon source, strain NISOC-03 utilized 64% of 0.8 mM dibenzothiophene, producing 0.27 mM phenyl phenol during the exponential growth phase, though the produced phenyl phenol was degraded in the stationary growth phase. In the presence of glucose as the carbon source, however, strain NISOC-03 metabolized only 19.6% of 0.8 mM dibenzothiophene. Furthermore, replacing glucose with ethanol or glycerol led to the same reduction of the dibenzothiophene utilization. It is thus concluded that the chemistry of the potential carbon source(s) in the culture medium has a significant influence on the quality and the rate of dibenzothiophene metablization, and the enrichment designation has a very vital effect on the biodegradation efficiency of the isolated microorganisms.


Alcon, A., Santos, V.E., Martin, A.B., Yustos, P. and Garcia-Ochoa, F. (2005). Biodesulfurisation of DBT with Pseudomonas putida CECT5279 by resting cells: Influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochem. Eng. J., 26,168–175.
Boniek, D., Figueiredo, D., dos Santos A.F.B. and de Resende Stoianoff M. (2015). Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol. Environ. Policy., 17, 29–37.
Breysse, M., Djega-Mariadassou, G., Pessayre, S., Geantet, C., Vrinat, M., Pérot, G. and Lemaire, M. (2003). Deep desulfurization: reactions, catalysts and technological challenges. Catal. Today., 84, 129–138.
Caro, A., Boltes, K., Let´on, P. and Garc´ıa-Calvo, V. (2007). Dibenzothiophene biodesulfurization in resting cell conditions by aerobic bacteria. Biochem. Eng. J., 35, 191-197.
Castorena, G., Sua.rez, C., Valdez, I., Amador, G., Fernandez, L. and Le Borgne, S. (2002). Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol. Lett., 215, 157-161.
Constanti, M., Giralt, J. and Bordons, A. (1994). Desulphurization of Dibenzothiophene by bacteria. World J. Microbiol. Biotechnol., 10, 510–516.
De Carvalho, C.C.C.R., Fatal, V., Alves, S.S. and Fonseca, M.M.R. (2007). Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl. Microbiol. Biotechnol., 76, 1423–1430.
Del Olmo, C.H., Santos, V.E., Alcon, A. and Garcia-Ochoa, F. (2005). Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem. Eng. J., 22, 229–237.
Guerinik, K. and Al-Mutawah, Q. (2003). Isolation and characterization of oil-desulphurizing bacteria. World J. Microbiol. Biotechnol., 19,941–945.
Hou, Y., Kong, Y., Yang, J., Zhang, J., Shi, D. and Xin, W. (2005). Biodesulfurization of dibenzothiophene by immobilized cells of Pseudomonas stutzeri UP-1. Fuel., 84, 1975–1979.
Jia, X., Wen, J., Sun, Z., Caiyin, Q. and Xie, S. (2006). Modeling of DBT biodegradation behaviors by resting cells of Gordonia sp. WQ-01 and its mutant in oil–water dispersions. Chem. Eng. Sci., 61, 1987 – 2000.
Jiang, X., Yang, S. and Li, W. (2014). Biodesulfurization of model compounds and de-asphalted bunker oil by mixed culture. Appl. Biochem. Biotechnol., 172, 62–72.
Kim, Y.J., Chang, J.H., Cho, K., Ryu, and Chang, H.W., Y. K. (2004). A Physiological Study on Growth and Dibenzothiophene (DBT) Desulfurization Characteristics of Gordonia sp. CYKS1. Korean J. Chem. Eng., 21, 436-441.
Konishi, J. and Aruhashi, M.K. (2003) 2-(20-Hydroxyphenyl) benzene sulfinate desulfinase from the thermophilic desulfurizing bacterium Paenibacillus sp. strain A11-2: purification and characterization. Appl. Microbiol. Biotechnol. 62, 356–361.
Konishi, M., Kishimoto, M., Omasa, T., Katakura, Y., Shioya, S. and Ohtake, H. (2005). Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis ka2-5-1 in exponential fed-batch culture. J Biosci Bioeng., 99, 259–263.
Li, W., Zhang, Y., Wang, M.D. and Shi, Y. (2005a). Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol. Lett., 247, 45–50.
Li, F., Xu, P., Feng, J., Meng, L., Zheng, Y., Luo, L. and Ma, C. (2005b). Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System. Appl. Environ. Microbiol., 71, 276–281.
Li, F., Zhang, Z., Feng, J., Cai, X. and Xu, P. (2007). Biodesulfurization of DBT in tetradecane and crude oil by a facultative thermophilic bacterium Mycobacterium goodii X7B. J. Biotechnol., 127, 222–228.
Li, Y.G., Li, W.L., Huang, J.X., Xiong, X.C., Gao, H.S., Xing, M. and Liu H.Z. (2008). Biodegradation of carbazole in oil/water biphasic system by a newly isolated bacterium Klebsiella sp. LSSE-H2. Biochem. Eng. J., 41, 166-170. 
Liu, L., Guo, Z., Lu, J., and Xu, X. (2015). Kinetic model for microbial growth and desulphurisation with Enterobacter sp. Biotechnol lett., 37(2), 375-381.
Luo, F., Xing, J.M., Gou, Z.X., Li, S., Liu, H.Z. and Chen, J.Y. (2003). Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem. Eng. J., 13, 1–6.
Maghsoudi, S., Kheirolomoom, A., Vossoughi, M., Tanaka, E. and Katoh, S. (2000). Selective desulfurization of dibenzothiophene by newly isolated Corynebacterium sp. strain P32C1. Biochem. Eng. J., 5, 11-16.
Maass, D., Todescato, D., Moritz, D.E., Oliveira, J.V., Oliveira, D., Ulson de Souza, A.A., et al. (2015). Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst. Eng., 38, 1447–1453.
Mezcua, M., Fern´andez-Alba, A.R., Rodr´ıguez, A., Boltes, K., Leton, P. and Garc´ıa-Calvo, E. (2007). Chromatographic methods applied in the monitoring of biodesulfurization processes. Talanta., 73, 103-114.
Mohebali, G., Ball, A.S., Rasekh, B. and Kaytash, A. (2006). Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A. Enzyme Microb. Technol., 40, 578-584.
Nuhu, A.A. (2013). Bio-catalytic desulfurization of fossil fuels: a mini review. Rev Environ Sci Bio-Technol., 12, 9–23.
Ollivier, B. and Magot, M. (2005). Petroleum microbiology. (USA: Blackwell).
Papizadeh, M. and Roayaei Ardakani, M. (2010). Bio filtration of volatile sulphurous hydrocarbon-polluted air by hydrocarbon degrading Pseudomonas NISOC-11, J Biotechnol., 150, 209-210.
Papizadeh, M., Roayaei Ardakani, M., Ebrahimipour, G. and Motamedi, H. (2010). Utilization of dibenzothiophene as sulfur source by Microbacterium sp. NISOC-06. World J. Microbiol. Biotechnol., 26, 1195-1200.
Papizadeh, M., Roayaei Ardakani, M., Motamedi, H., Rasouli, I. and Zarei, M. (2011). C-S targeted biodegradation of dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl. Biochem. Biotechnol., 165, 938-948.
Seo, J., Keum, Y., Cho, I.K., and Q. Li, X. (2006). Degradation of dibenzothiophene and carbazole by Arthrobacter sp. P1-1. Int. Biodeterior. Biodegrad., 58, 36-43.
Young, R.F., Cheng, S.M. and Fedorak, P.M. (2006). Aerobic Biodegradation of 2, 2_-Dithiodibenzoic Acid Produced from Dibenzothiophene Metabolites. Appl. Environ. Microbiol., 72, 491–496.