Tropospheric Ozone Pollution in Some Major Cities of West Africa and its Relationship with Atmospheric Circulations

Document Type : Original Research Paper


Department of Meteorology and Climate Science, Federal University of Technology, Akure, Nigeria


This study utilizes a decade long (2005-2014) monthly data of Total Column Tropospheric Ozone (TCTO) in Dubson units to evaluate the spatial and temporal trend of LAO over some major cities of West Africa, namely Lagos, Accra, Niamey, Abuja, Bamako, Dakar, Agadez, Conakry, Kano, and Ouagadougou which are either capital cites or major commercial hubs, where the population ranges from 0.09 million (Agadez, Niger) to over 9 million (Kano and Lagos, Nigeria). The mean (long term average) of TCTO in Lagos (Nigeria) was 34.4±0.6 DU (α=5%) for the entire period, being the highest in all major cities of this study. The lowest TCTO, 30.4±0.5 DU (α=5%), occurred in Bamako (Mali). It was also observed that the concentrations of TCTO vary seasonally. The seasonal changes in TCTO was investigated by categorizing months of the year to very dry months of December, January, and February (DJF), onset of rainy season months of March, April, and May (MAM), wet season months of June, July, and August (JJA), and end of rainy season months of September, October, and November (SON). Seasonal mean of TCTO is higher in all cities, close to the coast during DJF, and cities, north of latitude 12o N, during MAM, compared to rest of the seasons. Elevated TCTO concentrations can be attributed to transport mixing, due to the flow direction of well-known wind regime over the study area. This was established from the analysis of correlation coefficient between the mean of zonal, meridional winds, vertical wind speeds and divergence, and TCTO over region.


Abbas M.M., Guo, J., Carli, B., Mencaraglia, F., Carlotti, M. and Nolt, I.G. (1987). Heavy ozone distribution in the stratosphere from far-infrared observations. Journal of geophysical reasarch (atmosphere), DOI: 10.1029/JD092iD11p13231.
Adeyewa, Z. Debo and Oluleye, A. (2011). Relationships between aerosol index, ozone, solar zenith angle and surface reflectivity: a case study of satellite observations over Lagos, International Journal of Remote Sensing, 32: 9, 2605-2620.
Allen, Dale J. (2003). An estimate of the stratospheric contribution to springtime tropospheric ozone maxima using TOPSE measurements and beryllium-7 simulations, Journal of Geophysical Research, 108, D4.
Altshuller A.P. (1986). The role of nitrogen oxides in nonurban ozone formation in the planetary boundary layer over n America, w europe and adjacent areas of ocean, Atmospheric Environment, 20(2), 245.
Ancellet, G., de Bellevue, J. Leclair, Mari, C., Nedelec, P., Kukui, A., Borbon, A. and Perros, P. (2009) Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign. Atmos. Chem. Phys., 9, 383-411.
Barriford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, Kobayashi, Sh. and Uppala, S. (2009) The ERA interim archive Version 1.0 ERA report series.
Chameides W.L., Davis, D.D., Rodgers, M.O., Bradshaw, J., Sandholm, S., Sachse, G., Hill, G., Gregory, G., Rasmussen, R. (1987). Net ozone photochemical production over the eastern and central North Pacific as inferred from GTE/CITE 1 observations during fall 1983, Journal of Geophysical Research, 92, D2, 2131.
Chandra, S., Ziemke, J.R., Bhartia P.K. and Martin, R.V. (2003). Troposheric ozone at tropical and middle latitudes derived from TOMS/MLS residual: comparison with a global model. Journal of Geophysical research, 108(D9).
Di Carlo,P., Aruffo, E., Biancofiore, F., Busilacchio, M., Pitari, G., Dari–Salisburgo, C., Tuccella, P., Kajii, Y. (2015). Wildfires impact on surface nitrogen oxides and ozone in Central Italy. Atmospheric Pollution Research 6, 29-35.
Diedhiou, A., Janicot, S., Viltard, A. and de Felice, P. (1998). Evidence of two regimes of easterly wave over West Africa and the tropical Atlantic. Geophys. Res. Lett., 25, 2805-2808.
Diongue, A., Lafore, J.P., Redelsperger, J.L. and Roca, R. (2002). Numerical study of a Sahelian synoptic weather system: Initiation and mature stages of convection and its interactions with the large-scale dynamics Q. J. R. Meteorol. Soc., 128, 1899-1927.
Grist, J. P and Nicholson, S.E. (2001). A Study of the Dynamic Factors Influencing the Rainfall Variability in the West African Sahel. Journal of Climate 14, 1337-1359.
Grist, J.P., Nicholson, S.E. and Barcilon, A.I. (2002). Easterly waves over Africa. Part II: observed and modeled contrasts between wet and dry years.Monthly Weather Review 130, 212-225.
Haywood, J.M., Pelon, J., Formenti, P., et al. (2008). Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Observing Period-0, J. Geophys. Res., 113, D00C17, Doi:10.1029/2008JD010077.
Jonquieres, I., Marenco, A., Maalej, A. and Rohrer, F. (1998). Study of ozone formation and transatlantic transport from biomass burning emissions over West Africa during the airborne TROPospheric OZone campaigns TROPOZ I and TROPOZ II, J. Geophys. Res., 103, 19059-19073.
Mengistu Tsidu, G., Ture, K., Sivakumar, V. (2013). Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa, Atmospheric Research, 129-130.
Minga, A., Thouret, V., Saunois, M., Delon, C., Serc¸a, D., Mari, C., Sauvage, B., Mariscal, A., Leriche, M. and Cros, B. (2010). What caused extreme ozone concentrations over Cotonou in December 2005?, Atmos. Chem. Phys., 10, 895-907.
Murphy, J.G., Oram, D.E. and Reeves, C.E. (2010). Measurements of volatile organic compounds over West Africa. Atmos. Chem. Phys., 10, 5281-5294.
Oluleye, A. and Akinbobola, A. (2010). Malaria and pneumonia occurrence in Lagos, Nigeria: Role of temperature and rainfall. African Journal of Environmental Science and Technology, 4(8), 506-516.
Oluleye, A. and Okogbue, E.C. (2013). Analysis of temporal and spatial variability of total column ozone over West Africa using daily TOMS measurements. Atmospheric Pollution Research, 4, 387‐397.
Poppe, D., Koppmann, R. and Rudolph, J. (1998). Ozone formation in biomass burning plume: Influence of atmospheric dilution, Geophys. Res. Lett., 25, 3823-3826.
Pudasaineea, D., Balkrishna, S., Lal Shresthac, M., Kagac, A., Kondoc, A. and Inoue, Y. (2006). Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmospheric environment, 8081-8087.
Rao, S.T., Zurbenko, I.G., Neagu, R., Porter, P.S., Ku, J.Y. and Henry, R.F. (1997). Space and time scales in ambient ozone data. Bull. Amer. Meteor. Soc., 78, 2153-2166.
Ryu, J. and Jenkins, G.S. (2004). Seasonal variation of tropospheric ozone and lightning over the Tropical Atlantic. American Geophysical Union, Spring Meeting.
Saunois, M., Reeves, C.E., Mari, C.H., Murphy, J.G., Stewart, D.J., Mills, G.P., Oram, D.E. and Purvis, R.M. (2009). Factors controlling the distribution of ozone in the West African lower troposphere during the AMMA (African Monsoon Multidisciplinary Analysis) wet season campaign. Atmos. Chem. Phys., 9, 6135-6155.
Sauvage, B., Thouret, V., Cammas, J.P., Gheusi, F., Athier, G. and N´ed´elec, P. (2005). Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data. Atmos. Chem. Phys., 5, 311-335.
Schwanghart, W. and Schütt, B. (2007). Meteorological causes of Harmattan dust in West Africa. Geomorphology, doi:10.1016/j.geomorph.2007.07.002.
Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33, 1821–1845.
Simmons, A., Uppala, S., Dee, D. and Kobayashi, S. (2006). ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF newsletter 110, 26-35.
Sultan, B., Janicot, S. and Diedhiou, A. (2003). The West African Monsoon Dynamics. Part I: Documentation of Intraseasonal Variability Journal of Climate 16, 21, 3389-3406.
Uppala, S.M., KÅllberg, P.W., Simmons, A.J., Andrae, U., Bechtold, V.D.C., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., Berg, L.V.D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., Mcnally, A.P., Mahfouf, J.F., Morcrette, J.J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P. and Woollen, J. (2005), The ERA-40 re-analysis. Q.J.R. Meteorol. Soc., 131: 2961–3012. doi: 10.1256/qj.04.176.
van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Kasibhatla, P.S. and Arellano Jr., A. F. (2006). Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423-3441.
Waters, J.W. et al. (2006). The earth observaing system microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE trans Geosci Remote sens, 44(5), 1075-1092.
Willem, W., Verstraeten, J.L. Neu, J., Williams, E., Bowman, K.W., Worden, J.R. and Folkert Boersma, K. (2015). Rapid increases in tropospheric ozone production and export from China. Nature Geosciences 8, 690-695.
Yin, Y., Lin, J., Chen, J. and Hu, L. (2016). Improved simulation of tropospheric ozone by a global-multi- regional two-way coupling model system. Atmos. Chem. Phy., 16, 2381-2400.
Ziemke, J.R., Chandra, S., Duncan, B.N., Froidevaux, L., Bhartia, P.K., Levelt, P.F. and Waters, J.W. (2006). Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res., 111, D19303.
Ziemke, J.R., Chandra, S. and Bhartia, P.K. (2005). A 25-year data record of atmospheric ozone in the Pacific from Total Ozone Mapping Spectrometer (TOMS cloud slicing: Implications for ozone trends in the stratosphere and troposphere, J. Geophys. Res., 110, D15105.