Spatio-temporal variability of aerosol characteristics in Iran using remotely sensed datasets

Document Type : Original Research Paper


1 Department of Climatology, Tarbiat Modares University, Tehran, Iran

2 Institute of Physics and Electronics, University of Peshawar, Pakistan


The present study is the first attempt to examine temporal and spatial characteristics of aerosol properties and classify their modes over Iran. The data used in this study include the records of Aerosol Optical Depth (AOD) and Angstrom Exponent (AE) from MODerate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Index (AI) from the Ozone Monitoring Instrument (OMI), obtained from 2005 to 2015. The high concentration of AOD and AI values (representing high-high cluster) have been observed in the southwest and east regions, while their low concentrations (representing low-low cluster) have been found in the high mountainous areas. Based on AE values, Iran has been divided into three distinct regions, including fine, mixture, and coarse aerosol modes in each season. Results show that the maximum/minimum area under fine aerosols mode has occurred in the autumn, covering an area of 84.15% and in the spring, covering an area of 40.5%. In the case of coarse mode, the maximum/minimum area has been found in the spring, covered area=53.5% / in the Autumn covered area=12. 5%. The different aerosol modes regions strongly coincide with the topographical structure. To analyze the relation between aerosol properties and topography, Aerosol Properties Index (API) has been developed by combining OMI and MODIS datasets. API is a simple indicator, capable of showing the degree of aerosol coarseness in each pixel. There is a negative correlation between API and topography over the studied region, meaning that aerosol concentrations are high in the lowlands, but low in the highlands. However, this relation differs in various geographic regions, as Geographically Weighted Regression (GWR) model shows a higher determination coefficient in all seasons, in comparison to Ordinary Least Squares (OLS). 


Alam, K., Qureshi, S. and Blaschke, T. (2011a). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmos Environ, 45(27): 4641-4651.

Alam, K., Trautmann, T. and Blaschke, T. (2011b). Aerosol optical properties and radiative forcing over a mega city Karachi. Atmos. Res., 101: 773-782.

Alam, K., Iqbal, M.J., Blaschke, T., Qureshi, S. and Khan, G. (2010). Monitoring spatio-temporal variations in aerosols and aerosol-cloud interactions over Pakistan using MODIS data. Adv Space Res, 46(9): 1162-1176.

Andreae, M.O., Jones, C.D. and Cox, P.M. (2005). Strong present-day aerosol cooling implies a hot future. Nature, 435(7046): 1187-90.
Beeson, W.L., Abbey, D.E. and Knutsen, S.F. (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: Results from the AHSMOG study. Environ. Health Persp., 106(12): 813-822.
Berico, M. and Luciani A.F.M. (1997). Atmospheric aerosol in an urban area–measurement of TSP and PM10 standards a pulmonary deposition assessment. Atmos Environ., 31(21): 36-59.
Boiyo, R., Kumar, K.R., Zhao, T. and Bao, Y. (2017). Climatological analysis of aerosol optical properties over East Africa observed from space-borne sensors during 2001-2015. Atmos Environ., 152: 298-313.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., … and Zhan, X.Y. (2013). Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 571-657.
Charlson, R.A., Schwatz, S.E., Hales, J.M., Cess, R.D., Coakley, J.A., Hansen, D.J.H. (1992). Climate forcing by anthropogenic aerosols. Science, 255: 423-430.
Charlton, M., Fotheringham, S. and Brunsdon, C. (2009). Geographically weighted regression. White paper. National Centre for Geocomputation. National University of Ireland Maynooth.
Cheng, T., Xu, C., Duan, J., Wang, Y., Leng, C., Tao, J., … and Yu, X. (2015). Seasonal variation and difference of aerosol optical properties in columnar and surface atmospheres over Shanghai. Atmos Environ., 123: 315-326.
Chu, D.A., Kaufman, Y.J., Ichoku, C., Remer, L.A., Tanré, D. and Holben, B.N. (2002). Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett, 29(12).
Dickerson, R.R., Kondragunta, S., Stenchikov, G., Civerolo, K.L., Doddridge, B.G. and Holben, B.N. (1997). The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science, 827-830.
El-Askary, H., Gautam, R., Singh, R.P. and Kafatos, M. (2006). Dust storms detection over the Indo-Gangetic basin using multi sensor data. Adv Space Res., 37(4): 728-733.
Engelstaedter, S., Kohfeld, K.E., Tegen, I. and Harrison, S.P. (2003). Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data. Geophys Res Lett, 30(6).
Floutsi, A.A., Korras-Carraca, M.B., Matsoukas, C., Hatzianastassiou, N. and Biskos, G. (2016). Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12years (2002–2014) based on Collection 006 MODIS-Aqua data. Sci Total Environ, 551: 292-303.
Gerivani, H., Lashkaripour, G.R., Ghafoori, M. and Jalali, N. (2011). The source of dust storm in Iran: a case study based on geological information and rainfall data. Carpath J Earth Env, 6: 297-308.
Guan, H., Esswein, R., Lopez, J., Bergstrom, R., Warnock, A., Follette-Cook, M., … and Iraci, L.T. (2010). A multi-decadal history of biomass burning plume heights identified using aerosol index measurements. Atmos. Chem. Phys., 10(14): 6461-6469.
He, Q., Zhang, M. and Huang, B. (2016). Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos Environ., 129: 79-90.
Houghton JT, Y, D., DJ, G., M, N., PJ,  van der L., X, D., … C, J. (2001). Climate Change 2001: The Scientific Basis. Climate Change 2001: The Scientific Basis, 881.
IPCC. (2001). climate change 2001: the scientific basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by JT Houghton, Y. Ding, DJ Griggs, M. Noguer, PJ van der Linden, X. Dai, K. Maskell and CA Johnson (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. No. of pages: 881. Price£ 34.95, US $49.95, ISBN 0‐521‐01495‐6 (paperback).£ 90.00, US $130.00, ISBN 0‐521‐80767‐0 (hardback). International Journal of Climatology, 22(9), 1144-1144.
IPCC. (2007). Climate change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel. Genebra, Suíça.
IPCC. (2013). Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 33.
Kang, N., Kumar, K.R., Yin, Y., Diao, Y. and Yu, X., (2015). Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data(2003−2013): impact on cloud formation and climate change. Aerosol Air Qual. Res., 15: 958-973.
Kannemadugu, S., Baba, H., Joshi, A.K. and Moharil, S.V. (2014). Aerosol optical properties and types over Nagpur, Central India. Sus. Environ. Res., 24(1): 29-40.
Kaskaoutis, D.G., Nastos, P.T., Kosmopoulos, P.G., Kambezidis, H.D., Kharol, S.K., and Badarinath, K.V.S. (2010). The Aura-OMI aerosol index distribution over Greece. Atmos Res., 98(1): 28-39.
Kaskaoutis, D.G., Badarinath, K.V.S., Kumar Kharol, S., Rani Sharma, A. and Kambezidis, H.D. (2009). Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J Geophys Res Atmos, 114(D22): 1-20.
Kaskaoutis, D. G., Kambezidis, H. D., Hatzianastassiou, N., Kosmopoulos, P. G., and Badarinath, K. V. S. (2007). Aerosol climatology: on the discrimination of aerosol types over four AERONET sites. Atmos. Chem. Phys., 7(3), 6357–6411.
King, M.D., Menzel, W.P., Kaufman, Y.J., Tanré, D., Gao, B.C., Platnick, S., ... and Hubanks, P.A. (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE T. Geosci. Remote, 41(2): 442-458.
Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., … and Tie, X. (2006). An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6: 1815-1834.
Kosmopoulos, P.G., Kaskaoutis, D.G., Nastos, P.T. and Kambezidis, H.D. (2008). Seasonal variation of columnar aerosol optical properties over Athens, Greece , based on MODIS data. Remote Sens. Environ., 112: 2354-2366.
Kumar, K.R., Yin, Y., Sivakumar, V., Kang, N., Yu, X., Diao, Y., … and Reddy, R.R. (2015). Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa. Atmos Environ., 117: 9-18.
Kumar, K.R., Sivakumar, V., Yin, Y., Reddy, R.R., Kang, N., Diao, Y., Adesina, A.J. and Yu, X., (2014). Long-term (2003–2013) climatological trends and variations in aerosol optical parameters retrieved from MODIS over three stations in South Africa. Atmos. Environ., 95: 400-408.
Lee, J., Kim, J., Song, C.H., Kim, S.B., Chun, Y., Sohn, B.J. and Holben, B.N. (2010). Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos Environ., 44(26): 3110-3117.
Li, L. and Wang, Y. (2014). What drives the aerosol distribution in Guangdong-the most developed province in Southern China? Scientific Reports, 4, 5972.
Li, Z., Gu, X., Wang, L., Li, D., Xie, Y., Li, K., ... and Li, L. (2013). Aerosol physical and chemical properties retrieved from ground-based remote sensing measurements during heavy haze days in Beijing winter. Atmos. Chem. Phys., 13(20): 10171-10183.
Lohmann, U. and Feichter, J. (2004). Global indirect aerosol effects: a review. Atmos. Chem. Phys., 4(6): 7561-7614.
Luo, Y., Zheng, X., Zhao, T. and Chen, J. (2014). A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int J Climatol, 34(3): 863-870.
Lyamani, H., Olmo, F.J. and Alados-Arboledas, L. (2009). Physical and optical properties of aerosols over an urban location in Spain: seasonal and diurnal variability. Atmos. Chem. Phys., 9(5): 18159-18199.
McMichael, A.J., Rosalie, E. and Woodruff, S.H. (2006). Climate change and human health: present and future risks. Lancet, 367: 859-869.
Mehta, M. (2015). A study of aerosol optical depth variations over the Indian region using thirteen years (2001−2013) of MODIS and MISR Level 3 data. Atmos. Environ., 109: 161-170.
Modarres, R. (2006). Regional precipitation climates of Iran. J. Hydrol (New Zealand), 13-27.
Papadimas, C. D., Hatzianastassiou, N., Mihalopoulos, N., Querol, X., & Vardavas, I. (2008). Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6‐year (2000–2006) MODIS data. Journal of Geophysical Research: Atmospheres, 113(D11).
Pöschl, U. (2005). Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46): 7520-7540.
Pathak, B. and Bhuyan, P.K. (2015). Climatology of columnar aerosol properties at a continental location in the upper Brahmaputra basin of north east India: Diurnal asymmetry and association with meteorology. Adv Space Res., 56(7): 1469-1484.
Pathak, B., Bhuyan, P.K., Gogoi, M. and Bhuyan, K. (2012). Seasonal heterogeneity in aerosol types over Dibrugarh-North-Eastern India. Atmos Environ., 47: 307-315.
Penner, K.E.T. and J.E. (1994). Response of the climate system to atmospheric aerosols and greenhouse gases. Nature, 369: 734-737.
Pope, C.A. (2000). Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who’s at risk, Environ. Health Persp, 108 (SUPPL. 4): 713-723.
Ram, K., Sarin, M.M. and S.N.T. (2012). Emporal trends in atmospheric PM2. 5, PM10, EC, OC, WSOC and optical properties: Impact of biomass burning emissions in the Indo-Gangetic Plain. Envir. Sci. Tech., 46: 686-695.
Ram, K. and Sarin, M.M. (2010). Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. J Aerosol Sci., 41(1): 88-98.
Ramanathan, V. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549): 2119-2124.
Ranjan, R.R., Joshi, H.P. and Iyer, K.N. (2007). Spectral variation of total column aerosol optical depth over Rajkot: A tropical semi-arid Indian station. Aerosol Air Qual Res., 7(1): 33-45. Retrieved from
Rashki, A., Kaskaoutis, D.G., Rautenbach, C.J., deW, Eriksson, P.G., Qiang, M. and Gupta, P. (2012). Dust storms and their horizontal dust loading in the Sistan region, Iran. Aeolian Res., 5: 51-62.
Remer, L.A., Kleidman, R.G., Levy, R.C., Kaufman, Y.J., Tanr, D., Mattoo, S., … and Holben, B.N. (2008). Global aerosol climatology from the MODIS satellite sensors. J Geophys Res Atmos, 113(14): 1-18.
Remer, L.A., Tanre, D., Kaufman, Y.J., Ichoku, C., Mattoo, S., Levy, R., ... and Martins, J.V. (2002). Validation of MODIS aerosol retrieval over ocean. Geophys Res Lett, 29(12).
Satheesh, S.K. and Moorthy, K. (2005). Radiative effects of natural aerosols: A review. Atmos Environ., 39(11): 2089-2110.
Slutsker, I. and Kinne, S. (1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res, 104(3133331349), 00093-5.
Srivastava, A.K., Misra, A., Kanawade, V.P. and Devara, P.C.S. (2016). Aerosol characteristics in the UTLS region: A satellite-based study over north India. Atmos Environ., 125: 222-230.
Tariq, S. and Ali, M. (2015). Spatio–temporal distribution of absorbing aerosols over Pakistan retrieved from OMI onboard Aura satellite. Atmos Pollut Res., 6(2): 254-266.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., … and Tie, X. (2006). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6: 1777-1813.
Zarasvandi, A., Carranza, E.J.M., Moore, F. and Rastmanesh, F. (2011). Spatio-temporal occurrences and mineralogical–geochemical characteristics of airborne dusts in Khuzestan Province (southwestern Iran). J. Geochem. Explor., 111(3): 138-151.
Zayakhanov, A.S., Zhamsueva, G.S., Naguslaev, S.A., Tsydypov, V.V., Ayurzhanaev, A.A., Sakerin, S.M. and Oyunchimeg, D. (2012). Spatiotemporal characteristics of the atmospheric AOD in the Gobi desert according to data of the ground-based observations. Atmos Oceanic Opt., 25(5): 346-354.
Zoljoodi, M., Didevarasl, A. and Saadatabadi, A.R. (2013). Dust events in the western parts of Iran and the relationship with drought expansion over the. Atmos. Clim Sci., 2013(July): 321-336.