Affum, H.A., Akaho, E.H.K., Niemela, J.J., Armenio, V. and Danso, K.A. (2016). Validating the California Puff (CALPUFF) Modelling System Using an Industrial Area in Accra, Ghana as a Case Study. Open J. Air Pollut., 5; 27-36.
Abdul-Wahab S.A., Chan K., Elkamel A. and Ahmadi L. (2014). Effects of meteorological conditions on the concentration and dispersion of an accidental release of H2S in Canada. Atmos. Environ., 82; 316–326.
Abdul-Wahab S.A., Ikhile, E., En, S.C.F., Elkamel, A., Ahmadi, L. and Yetilmezsoy, K. (2016). Modeling the dispersion of NOx and SO2 emissions from a proposed biogas producing facility. Global NEST J., 18(4); 674-689.
Affum, H.A., Brunetti, A., Niemela, J.J., Armenio, V., Akaho, E.H.K. and Danso, K.A. (2015). Preliminary Simulation of Dispersion and Deposition of Refinery Emissions over an Industrial Area in Ghana. African Rev. Phys., 10; 209-218.
Bandyopadhyay, A. (2009). Prediction of ground level concentration of SO2 using ISCST3 model in Bangalore industrial region of India. Clean Technol. Environ.,11; 173-188.
Busini, V., Capelli, L., Sironi, S., Nano, G., Rossi, A.N., and Bonati, S. (2012). Comparison of CALPUFF and AERMOD Models for Odour Dispersion Simulation. Chem. Eng. Trans., 30; 205- 210.
Cohen, J., Cook, R., Bailey, C. R., and Carr, E. (2005). Relationship between motor vehicle emissions of hazardous pollutants, roadway proximity, and ambient concentrations in Portland, Oregon. Environ. Modelling & Software, 20;7-12.
Demirarslan, K.O. and Doğruparmak, Ş.Ç. (2016). Determination of performance and application of the steady-state models and the lagrangian puff model for environmental assessment of CO and NOX emissions. Pol. J. Environ. Stud., 25(1), 83-96.
Demirarslan, K.O., Çetin Doğruparmak, Ş. and Karademir, A. (2017). Evaluation of three pollutant dispersion models for the environmental assessment of a district in Kocaeli, Turkey. Global NEST J., 19(1); 37-48.
Dresser A.L. and Huizer R.D. (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited. J. Air Waste Manag. Assoc., 61(6); 647–659.
Environmental Protection Agency, 1998. National Air Quality and Emissions Trends Report, 1997. Washington, DC.
Fishwick, S. and Scorgie, Y. (2011). Performance of CALPUFF in predicting time-resolved particulate matter concentrations from a large scale surface mining operation, Paper presented at the 20th CASANZ Conference, 30, July–2 August, Auckland, New Zealand.
Ghannam, K. and EL-Fadel, M. (2013). Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach, Atmos. Environ., 69; 156–169.
Gulia, S., Kumar, A. and Khare, M. (2015). Performance evaluation of CALPUFF and AERMOD dispersion models for air quality assessment of an industrial complex. J. Sci. Ind. Res., 74; 302- 307.
Hernández-Garces, A., Souto, J. A., Rodríguez, Á., Saavedra, S., and Casares, J. J. (2015).Validation of CALMET/CALPUFF models simulations around a large power plant stack. Física de la Tierra, 27; 35- 55.
Holnicki, P., Kałuszko, A. and Trapp, W. (2016). An urban scale application and validation of the CALPUFF model. Atmos. Pollut Res., 7; 393–402.
Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. and Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43(1); 48–64.
Jiang, G., Lamb, B. and Westberg, H. (2003). Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region. Atmos. Environ., 37; 1489-1502.
Ketabi, M. (2004). Sustainable Development in Tehran, A Case Study of Traffic and Pollution Problems in Tajrish District. Annual Meeting of the world student community for sustainable development (WSC-SD), Goteborg, Sweden.
Levy, J. I., Spengler, J. D., Hlinka, D., Sullivan, D. and Moon, D. (2002). Using CALPUFF to evaluate the impacts of power plant emissions in Illinois: Model sensitivity and implications. Atmos. Environ., 36; 1063-1075.
Levy, J.I., Wilson, A.M., Evans, J.S. and Spengler, J.D. (2003). Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia. Environ. Sci. Technol., 37(24); 5528-5536.
Malakooti, H. (2011). Meteorology and air-quality in a mega-city: application to Tehran, Iran, PhD. Thesis, École des Ponts ParisTech / Universite Paris Est.
Markandeya, P., Shukla1, S. P. and Kisku, G. C. (2016). A Clean Technology for Future Prospective: Emission Modeling of Gas Based Power Plant. Open J. Air Poll., 5;144-159.
Pandey, P., Patel, D.K., Khan, A.H., Barman, S.C., Murthy, R.C. and Kisku, G.C. (2013). Temporal Distribution of Fine Particulates (PM2.5, PM10), Potentially Toxic Metals, PAHs and Metal-Bound Carcinogenic Risk in the Population of Lucknow City. Indian J. Environ. Sci. Health, 48; 730-745.
Protonotariou, A., Bossioli, E., Athanasopoulou, E., Dandou, A., Tombrou, M., Assimakopoulos, V.D., Flocas, H.A. and Chelmis, C.G. (2005). Evaluation of CALPUFF modelling system performance over the greater Athens area, Greece. Int. J. Environ. Poll., 24(1–4); 22–35.
Varna, M. G. and Gimsom, N. R. (2002). Dispersion modeling of a wintertime particulate pollution episode in Christchurch, New Zealand. Atmos. Environ., 36; 3531-3544.
Varon, J., Marik, P.E., Fromm, R.E. and Gueler, A. (1999). Carbon Monoxide Poisoning: A Review for Clinicians. J. Emer. Med., 17; 87-93.
Venkataram, A. (1996). An examination of the Pasquill-Gifford-Turner dispersion scheme. Atmos. Environ., 28 (3); 283- 290.
Xing, Y., Guo, H., Feddes, J., Yu, Z., Shewchuck, S. and Predicala, B. (2007). Sensitivities of four air dispersion models to climatic parameters for Swine odor dispersion. Am. Soc. Agri. Bio. Engg. , 50 (3); 1007- 1017.
Yau, K.H., Macdonald, R.W. and The, J.L. (2004). Inter-comparison of the AUSTAL2000 and CALPUFF dispersion models against the Kincaid data set. International Journal of Environment and Pollution, 40(1-3), 267-279.