Wastewater Remediation via Modified Activated Carbon: A Review

Document Type : Original Research Paper

Authors

Environmental Engineering Department, Faculty of Engineering, Mustansiriyah University Baghdad 10047, Iraq

Abstract

The magnetic derivative of Activated Carbon (AC) is a promising new technique to isolate and recover consumed adsorbent. In this light, the current research seeks to summarise the magnetisation rout of AC and its applications, while identifying both benefits and drawbacks of different synthetic routs. Several methods, such as chemical co-precipitation, hydrothermal, impregnation, ball milling, and one-step synthetic routs, have been studied by previous researchers. Among these methods, chemical co-precipitation is simple, extensively adapted for Magnetic Activated Carbon (MAC) syntheses. In general, the magnetic derivatives of AC show a reduction in the surface area and pore volume, due to introduction of magnetic nanoparticles. Magnetisation enhances contaminants' adsorption, despite the reduction in surface area. It allows elimination of contaminants, barely treated by pristine AC due to the introduction of magnetic materials. Developments in synthetic procedures could overcome the destructive influence of acidity on MAC, providing a shield against it. MAC has been used in several applications, including organic and inorganic contaminant removal. Medically, MAC is used to lead drugs to a specific organ and, thus, reduce damages to non-affected organs. It can be said that the preparation method did not obstruct MAC application for specific contaminant adsorption. MAC regeneration has been reported for several sorption cycles, making the process sustainable and cost-effective. Future work could further develop the synthetic route and enhance the characteristics of the produced composite. It also may consider the influence of iron on the treated water, depending on its proposed usage.

Keywords


Abd El-Latif, M. M., Ibrahim, A. M. and El-Kady, M. F. (2010a). Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using biopolymer oak sawdust composite. Am. J. Sci., 6(6), 267-283.
Abd El-Latif, M. M., and Ibrahim, A. M. (2010b). Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from oak sawdust. Desalin. Water Treat., 20, 102-113.
Ahn, S., Werner, D., Karapanagioti, H. K., Mcglothlin, D. R., Zare, R. N. and Luthy, R. G. (2005). Phenanthrene and pyrene sorption and intraparticle diffusion in polyoxymethylene, coke, and activated carbon. Environ. Sci. Technol., 39(17), 6516-6526.
Ai, L., Huang, H., Chen, Z., Wei, X. and Jiang, J. (2010). Activated carbon/CoFe2O4 composites: Facile synthesis, magnetic performance and their potential application for the removal of malachite green from water. Chem. Eng. J., 156(2), 243-249.
Alqadami, A. A., Naushad, M., Abdalla, M. A., Ahamad, T., Abdullah Alothman, Z., Alshehri, S. M. and Ghfar, A. A. (2017). Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: A study of adsorption parameters and interaction mechanism. J. Cleaner Prod., 156, 426-436.
Altıntıg, E., Altundag, H., Tuzen, M. and Sarı, A. (2017). Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des., 122, 151-163.
Ao, Y., Xu, J., Fu, D. and Yuan, C. (2008). A simple route for the preparation of anatase titania-coated magnetic porous carbons with enhanced photocatalytic activity. Carbon., 46(4), 596-603.
Arcibar-Orozco, J. A., Avalos-Borja, M. andRangel-Mendez, J. R. (2012). Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: as (V) removal from water. Environ. Sci. Technol., 46, 9577-9583.
Babes, L., Denizot, B., Tanguy, G., Le Jeune, J. J. and Jallet, P. (1999). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents: A Parametric Study. J Colloid Interface Sci., 212(2), 474-482.
Baig, S. A., Zhu, J., Muhammad, N., Sheng, T. and Xu, X. (2014). Effect of synthesis methods on magnetic Kans grass biochar for enhanced As (III, V) adsorption from aqueous solutions. Biomass Bioenergy., 71, 299-310.
Borghi, C. C. and Fabbri, M. (2014). Magnetic recovery of modified activated carbon powder used for removal of endocrine disruptors present in water. Environ. Technol., 35(8), 1018-1026.
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J. and Naushad, M. (2017). Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review, J. Environ. Chem. Eng., 5(3), 2782-2799.
Castro, C. S., Guerreiro, M. C., Goncalves, M., Oliveira, L. C. and Anastacio, A. S. (2009). Activated carbon/iron oxide composites for the removal of atrazine from aqueous medium. J Hazard Mater., 164(2-3), 609-14.
Cho, D. W., Kwon, G., Yoon, K., Tsang, Y. F., Ok, Y. S., Kwon, E. E. and Song, H. (2017b). Simultaneous production of syngas and magnetic biochar via pyrolysis of paper mill sludge using CO2 as reaction medium. Energy Convers. Manag., 145, 1-9.
Cho, D. W., Yoon, K., Kwon, E. E., Biswas, J. K., and Song, H. (2017c). Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ. Pollut., 229, 942-949.
Chowdhury, A. N., Jesmeen, S. and Hossain, M. (2004). Removal of dyes from water by conducting polymeric adsorbent. Polym. Adv. Technol., 15(11), 633-638.
Danalıoğlu, S. T., Bayazit, Ş. S., Kerkez Kuyumcu, Ö. and Salam, M. A. (2017). Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. J. Mol. Liq., 240, 589-596.
Diao, X., Chen, H., Zhang, G., Zhang, F. and Fan, X. (2012). Magnetic carbon nanotubes for protein separation. J. Nanomaterials., 2012, 57.
Dickhout, J. M., Moreno, J., Biesheuvel, P. M., Boels, L., Lammertink, R. G. H. and De Vos, W. M. (2017). Produced water treatment by membranes: A review from a colloidal perspective. J Colloid Interface Sci., 487, 523-534.
Ding, H., Wu, Y., Zou, B., Lou, Q., Zhang, W., Zhong, J., Lu, L. and Dai, G. (2016). Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccase-mediated oxidation coupled with soil adsorption. J Hazard Mater., 307, 350-8.
Do, M. H., Phan, N. H., Nguyen, T. D., Pham, T. T. S., Nguyen, V. K., Vu, T. T. T. and Nguyen, T. K. P. (2011). Activated carbon/Fe3O4 nanoparticle composite: Fabrication, methyl orange removal and regeneration by hydrogen peroxide. Chemosphere., 85, 1269-1276.
Faulconer, E. K., Von Reitzenstein, N. V. H. and Mazyck, D. W. (2012). Optimization of magnetic powdered activated carbon for aqueous Hg(II) removal and magnetic recovery. J. Hazard. Mater., 199, 9-14.
Fernández-Bertran, J. F. (1999). Mechanochemistry: an overview. Pure Appl. Chem., 71(4), 581-586.
Galanzha, E. I., Shashkov, E., Sarimollaoglu, M., Beenken, K. E., Basnakian, A. G., Shirtliff, M. E., Kim, J.-W., Smeltzer, M. S. and Zharov, V. P. (2012). In Vivo Magnetic Enrichment, Photoacoustic Diagnosis, and Photothermal Purging of Infected Blood Using Multifunctional Gold and Magnetic Nanoparticles. PLoS One., 7(9), e45557.
Figueira, P., Lopes, C. B., Daniel-da-Silva, A. L., Pereira, E., Duarte, A. C. and Trindade, T. (2011). Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: Application to synthetic and natural spiked waters, Water Res., 45, 5773-5784.
Ghasemi, M., Naushad, M., Ghasemi, N. and Khosravi-fard, Y. (2014). A novel agricultural waste based adsorbent for the removal of Pb(II) from aqueous solution: Kinetics, equilibrium and thermodynamic studies. J. Ind. Eng. Chem., 20, 454-461.
Gomez-Tamayo, M. d. M., Macias-Garcia, A., DiazDiez, M. A. and Cuerda-Correa, E. M. (2008). Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.). J. Hazard. Mater., 153, 28-36.
Gorria, P., Sevilla, M., Blanco, J. A. and Fuertes, A. B. (2006). Synthesis of magnetically separable adsorbents through the incorporation of protected nickel nanoparticles in an activated carbon. Carbon., 44(10), 1954-1957.
Guo, S., Jiao, P., Dan, Z., Duan, N., Chen, G. and Zhang, J. (2017). Preparation of L-arginine modified magnetic adsorbent by one-step method for removal of Zn(Ⅱ) and Cd(Ⅱ) from aqueous solution. Chem. Eng. J., 317, 999-1011.
Hai, T. N. (2017). Comments on effect of temperature on the adsorption of methylene blue dye onto sulfuric acid–treated orange peel. Chem. Eng. Commun., 204, 134-139
Hasan, M. B. (2017). Solar photocatalytic treatment of simazine from synthetic wastewater. J. Eng. Sustainable Dev., 21(5), 200-212.
Hatami, F. and Faghihian, H. (2015). Modification of activated carbon by 4-(8 hydroxyquinoline-azo) benzamidine for removal of Hg2+ from aqueous solutions. Environ. Prog., 34, 1562-1567.
Joshi, S. and Adhikari Pradhananga, M. (2017). Removal of Fluoride Ions by Adsorption onto Fe2O3/Areca Nut Activated Carbon Composite. J. Inst. Eng., 12(1), 175-183.
Jolivet, J.-P., Chanéac, C. and Tronc, E. (2004). Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun., 5, 481-483.
Karbassi, A. and Pazoki, M. (2015). Optimization of coagulation/flocculation for treatment of wastewater. J. Environ. Treatment Tech., 3(2), 170-174.
Kuppireddy, S. K. R., Rashid, K., Shoaaibi, A. A. and Srinivasakannan, C. H. (2014). Production and characterization of porous carbon from date palm seeds by chemical
activation with H3PO4: Process optimization for maximizing adsorption of methylene blue. Chem. Eng. Commun., 201, 1021-1040.
Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L. and Muller, R. N. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 108(6), 2064-2110.
Lemine, O. M., Ghiloufi, I., Bououdina, M., Khezami, L., M’hamed, M. O. and Hassan, A. T. (2014). Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J. Alloys Compd., 588, 592-595.
Li, C., Lu, J., Li, S., Tong, Y. and Ye, B. (2017). Synthesis of Magnetic Microspheres with Sodium Alginate and Activated Carbon for Removal of Methylene Blue. Materials, 10(1), 84.
Lin, S.-H. and Juang, R.-S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage., 90(3), 1336-1349.
Luo, X., Lei, X., Cai, N., Xie, X., Xue, Y. and Yu, F. (2016). Removal of Heavy Metal Ions from Water by Magnetic Cellulose-Based Beads with Embedded Chemically Modified Magnetite Nanoparticles and Activated Carbon. ACS Sustainable Chem. Eng., 4(7), 3960-3969.
Ma, Y., Manolache, S., Denes, F., Vail, D., Thamm, D. and Kurzman, I. (2006). Plasma synthesis of carbon-iron magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J. Mater. Eng. Perform., 15(3), 376-382.
Maneechakr, P. and Karnjanakom, S. (2017). Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: Surface chemistry, isotherm, kinetic and thermodynamic studies. J. Chem. Thermodyn., 106, 104-112.
Mehta, D., Mazumdar, S. and Singh, S. K. (2015). Magnetic adsorbents for the treatment of water/wastewater. J. Water Process Eng., 7, 244-265.
Minceva, M., Markovska, L. and Meshko, V. (2007). Removal of Zn2+, Cd2+ and Pb2+ from binary aqueous solution by natural zeolite and granulated activated carbon., Maced. J. Chem. Chem. Eng., 26(2), 125-134.
Modugno, G., Menard-Moyon, C., Prato, M. and Bianco, A. (2015). Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br. J. Pharmacol., 172(4), 975-91.
Mohammadi, A., Kazemipour, M., Ranjbar, H., Walker, R. B. and Ansari, M. (2015). Amoxicillin Removal from Aqueous Media Using Multi-Walled Carbon Nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures., 23(2), 165-169.
Mohan, D., Sarswat, A., Singh, V. K., Alexandre-Franco, M. and Pittman, C. U. (2011). Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J., 172(2-3), 1111-1125.
Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M. and Pittman Jr, C.U. (2014). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J., 236, 513-528.
Mokhtari, Sh. and Faghihian, H. (2015). Modification of activated carbon by 2,6-diaminopyridine for separation of Hg2+ from aqueous solutions. J. Environ. Chem. Eng., 674, 1-7.
Mubarak, N. M., Alicia, R. F., Abdullah, E. C., Sahu, J. N., Haslija, A. A. and Tan, J. (2013). Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. J. Environ. Chem. Eng., 1(3), 486-495.
Nakahira, A., Nagata, H., Takimura, M., Fukunishi, K., M., C. S., D., Y. S. and M., L. B. (2007). Synthesis and evaluation of magnetic active charcoals for removal of environmental endocrine disrupter and heavy metal ion. J. Appl. Phys., 101(9), 09J114.
Naushad, M., Ahamad, T., Al-Maswari, B. M., Alqadami, A. A. and Alshehri, S. M. (2017). Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J., 330, 1351-1360.
Nguyen, T. D., Phan, N. H., Do, M. H. and Ngo, K. T. (2011). Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J. Hazard. Mater., 185, 653-661.
Oh, W.-D., Lua, S.-K., Dong, Z. and Lim, T.-T. (2015). Performance of magnetic activated carbon composite as peroxymonosulfate activator and regenerable adsorbent via sulfate radical-mediated oxidation processes. J. Hazard. Mater., 284, 1-9.
Okamoto, T., Tachibana, S., Miura, O. and Takeuchi, M. (2011). Mercury removal from solution by superconducting magnetic separation with nanostructured magnetic adsorbents. Physica C: Superconductivity and its Applications., 471, 1516-1519.
Oliveira, L. C. A., Petkowicz, D. I., Smaniotto, A. and Pergher, S. B. C. (2004). Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res., 38(17), 3699-3704.
Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Garg, V., Sapag, K. and Lago, R. M. (2002). Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon., 40, 2177-2183.
Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K. and Lago, R. M. (2003). Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci., 22, 169-177.
Özcan, A. S., Erdem, B. and Özcan, A. (2004). Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite, J. Colloid Interface Sci., 280, 44-54.
Parlayıcı, Ş. and Pehlivan, E. (2017). Removal of metals by Fe3O4 loaded activated carbon prepared from plum stone (Prunus nigra): Kinetics and modelling study. Powder Technol., 317, 23-30.
Patzak, M., Dostalek, P., Fogarty, R. V.  Safarik, I. and Tobin, J. M. (1997). Development of magnetic biosorbents for metal uptake. Biotechnology Techniques., 11, 483-487.
Paul, K. G., Frigo, T. B., Groman, J. Y. and Groman, E. V. (2004). Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjugate Chem., 15, 394-401.
Pyrzyńska, K. and Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf., A., 362, 102-109.
Qu, L., Han, T., Luo, Z., Liu, C., Mei, Y. and Zhu, T. (2015). One-step fabricated Fe3O4@C core–shell composites for dye removal: Kinetics, equilibrium and thermodynamics. J. Phys. Chem. Solids., 78, 20-27.
Ramanujan, R. V., Purushotham, S. and Chia, M. H. (2007). Processing and characterization of activated carbon coated magnetic particles for biomedical applications. Mater. Sci. Eng., C., 27, 659-664.
Reddy, D. H. K. and Lee, S. M. (2014). Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal. Colloids Surf. A Physicochem. Eng. Asp., 454, 96-103.
Rocher, V., Siaugue, J.-M., Cabuil, V. and Bee, A. (2008). Removal of organic dyes by magnetic alginate beads. Water Res., 42, 1290-1298.
Rudge, S., Peterson, C., Vessely, C., Koda, J., Stevens, S. and Catterall, L. (2001). Adsorption and desorption of chemotherapeutic drugs from a magnetically targeted carrier (MTC). J. Control. Release., 74(1-3), 335-340.
Safarik, I. and Safarikova, M. (2009). Magnetic nano- and microparticles in biotechnology. Chem. Pap., 63, 497-505.
Safarik, I. Horska, K., Svobodova, B. and Safarikova, M. (2012). Magnetically modified spent coffee grounds for dyes removal. Eur. Food Res. Technol., 234, 345-350.
Saleh, T. A., Tuzen, M. and Sarı, A. (2017). Magnetic activated carbon loaded with tungsten oxide nanoparticles for aluminum removal from waters. J. Environ. Chem. Eng., 5(3), 2853-2860.
Saleh, T.A., Tuzen, M. and Sarı, A. (2018). Polyamide magnetic palygorskite for the simultaneous removal of Hg (II) and methyl mercury; with factorial design analysis. J. Environ. Manage., 211, 323-333.
Saroyan, H. S., Giannakoudakis, D. A., Sarafidis, C. S., Lazaridis, N. K. and Deliyanni, E. A. (2017). Effective impregnation for the preparation of magnetic mesoporous carbon: application to dye adsorption. J. Chem. Technol. Biotechnol., 92, 1899-1911.
Senthilkumar, T., Chattopadhyay, S. K. and Miranda, L. R. (2017). Optimization of activated carbon preparation from pomegranate peel (Punica granatum peel) Using RSM. Chem. Eng. Commun., 204, 238-248.
Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., Yu, G., Winglee, J. and Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J. Hazard. Mater., 305, 156-163.
Shi, Y., Pramanik, A., Tchounwou, C., Pedraza, F., Crouch, R. A., Chavva, S. R., Vangara, A., Sinha, S. S., Jones, S., Sardar, D., Hawker, C. and Ray, P. C. (2015). Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Appl. Mater. Interfaces., 7, 10935-10943.
 
 
Son, E. B., Poo, K. M., Mohamed, H. O., Choi, Y. J., Cho, W. C. and Chae, K. J. (2018). A novel approach to developing a reusable marine macro-algae adsorbent with chitosan and ferric oxide for simultaneous efficient heavy metal removal and easy magnetic separation. Bioresour. Technol., 259, 381-387.
Song, Z. L., Zhao, X. H., Liu, W. N., Ding, D., Bian, X., Liang, H., Zhang, X. B., Chen, Z. and Tan, W. (2013). Magnetic graphitic nanocapsules for programmed DNA fishing and detection. Small., 9, 951-7.
Sun, S. and Zeng, H. (2002). Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc., 124, 8204-8205.
Tang, J., Tang, D., Niessner, R., Chen, G. and Knopp, D. (2011). Magneto-Controlled Graphene Immunosensing Platform for Simultaneous Multiplexed Electrochemical Immunoassay Using Distinguishable Signal Tags. Anal. Chem., 83, 5407-5414.
Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S., Gonzalez-Carreño, T. and Serna, C. J. (2006). Synthesis, properties and biomedical applications of magnetic nanoparticles. Handbook of magnetic materials., 16, 403-482.
Theydan, S. K. and Ahmed, M. J. (2012). Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrol., 97, 116-122.
Tezcan Un, U., Ates, F., Erginel, N., Ozcan, O. and Oduncu, E. (2015). Adsorption of Disperse Orange 30 dye on to activated carbon de rived from Holm Oak (Quercus Ilex) acorns: A 3k factorial design and analysis. J. Environ. Manage., 155, 89-96.
Thangamani, K.S., Andal, N.M., Kumar, E.R. and Saravanabhavan, M. (2017). Utilization of magnetic nano cobalt ferrite doped Capra aegagrus hircus dung activated carbon composite for the adsorption of anionic dyes. J. Environ. Chem. Eng., 5(3), 2820-2829.
Thitame, P. V., and Shukla, S. R. (2016). Porosity development of activated carbons prepared from wild almond shells and coir pith using phosphoric acid. Chem. Eng. Commun., 203, 791-800.
Tian, G., Wang, W., Zhu, Y., Zong, L., Kang, Y. and Wang, A. (2018). Carbon/Attapulgite Composites as Recycled Palm Oil-Decoloring and Dye Adsorbents. Materials, 11(1), 86.
Tran, T. V., Bui, Q. T. P., Nguyen, T. D., Le, N. T. H. and Bach, L. G. (2017). A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology. Adsorption Sci. Technol., 35, 72-85.
Tseng, R.-L., Wu, F.-C. and Juang, R.-S. (2003). Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon., 41, 487-495.
Wang, F. (2017). Novel high performance magnetic activated carbon for phenol removal: equilibrium, kinetics and thermodynamics. J. Porous Mater., 24, 1309-1317.
Wang, H., Chen, Q.-W., Chen, J., Yu, B.-X. and Hu, X.-Y. (2011a). Carboxyl and negative charge-functionalized superparamagnetic nanochains with amorphous carbon shell and magnetic core: synthesis and their application in removal of heavy metal ions. Nanoscale., 3, 4600-4603.
Wang, W., Zhang, H., Zhang, L., Wan, H., Zheng, S. and Xu, Z. (2015). Adsorptive removal of phosphate by magnetic Fe3O4@C@ZrO2. Colloids Surf. A., 469, 100-106.
Wang, Y., Li, L., Luo, C., Wang, X. and Duan, H. (2016). Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int. J. Biol. Macromol., 86, 505-511.
Wang, Y., Rao, G. Y. and Hu, J. Y. (2011b). Adsorption of EDCs/PPCPs from drinking water by submicron-sized powdered activated carbon. Water Sci. Technol.: Water Supply., 11, 711-718.
Wendimu, G., Zewge, F. and Mulugeta, E. (2017). Aluminium-iron-amended activated bamboo charcoal (AIAABC) for fluoride removal from aqueous solutions. J. Water Process Eng., 16, 123-131.
Wu, K. H., Shin, Y. M., Yang, C. C., Wang, G. P. and Horng, D. N. (2006). Preparation and characterization of bamboo charcoal/Ni0.5Zn0.5Fe2O4 composite with core-shell structure. Mater. Lett., 60, 2707-2710.
Wu, R., Liu, J.-H., Zhao, L., Zhang, X., Xie, J., Yu, B., Ma, X., Yang, S.-T., Wang, H. and Liu, Y. (2014). Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J. Environ. Chem. Eng., 2, 907-913.
Wu, W., Wu, Z., Yu, T., Jiang, C. and Kim, W. S. (2015). Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater., 16, 023501.
 
Xiong, W., Hu, X., Wu, X., Zeng, Y., Wang, B., He, G. and Zhu, Z. (2015). A flexible fiber-shaped supercapacitor utilizing hierarchical NiCo2O4@polypyrrole core-shell nanowires on hemp-derived carbon. J. Mater. Chem. A., 3(33), 17209-17216.
Xuan, S., Hao, L., Jiang, W., Gong, X., Hu, Y. and Chen, Z. (2007). A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology, 18, 035602.
Xue, Y., Hou, H. and Zhu, S. (2009). Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag, J. Hazard. Mater., 162, 391-401.
Yamamura, A. P. G., Yamaura, M. and Costa, C. H. (2011). Magnetic biosorbent for removal of uranyl ions. Int. J. Nucl. Energy Sci. and Technol., 6, 8-16.
Yang, M., Xie, Q., Zhang, J., Liu, J., Wang, Y., Zhang, X. and Zhang, Q. (2010). Effects of coal rank, Fe3O4 amounts and activation temperature on the preparation and characteristics of magnetic activated carbon. Min. Sci. Technol. (China)., 20, 872-876.
Yang, N., Zhu, S., Zhang, D. and Xu, S. (2008). Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Mater. Lett., 62(4-5), 645-647.
Yin, Ch. Y., Kh. Aroua, M., Ashri, W. F., and Daud, W. (2007). Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions. Sep. Purif. Technol., 52, 403-415.
Younas, M., Leong, L. K., Mohamed, A. R., and Sethupathi, S. (2016). CO2 adsorption by modified palm shell activated carbon (PSAC). Chem. Eng. Commun., 203, 1455-1463.
Zeng, G., Liu, Y., Tang, L., Yang, G., Pang, Y., Zhang, Y., Zhou, Y., Li, Z., Li, M., Lai, M., He, X. and He, Y. (2015). Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem. Eng. J., 259, 153-160.
Zhang, G., Qu, J., Liu, H., Cooper, A. T. and Wu, R. (2007). CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration. Chemosphere., 68, 1058-1066.
Zhang, J., Xie, Q., Liu, J., Yang, M. and Yao, X. (2011). Role of Ni(NO3)2 in the preparation of a magnetic coal-based activated carbon. Min. Sci. Technol. (China)., 21, 599-603.
Zhang, M. Gao, B. Varnoosfaderani, S. Hebard, A. Yao, Y. Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal, Bioresource Technology., 130, 457-462.
Zhang, S., Tao, L., Jiang, M., Gou, G. and Zhou, Z. (2015). Single-step synthesis of magnetic activated carbon from peanut shell. Mater. Lett., 157, 281-284.
Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N. and Wu, W. (2016). Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. J. Environ Manage., 172, 193-200.
Zhang, Z. and Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater., 193, 325-329.
Zheng, J., Liu, Z. Q., Zhao, X. S., Liu, M., Liu, X. and Chu, W. (2012). One-step solvothermal synthesis of Fe3O4@C core–shell nanoparticles with tunable sizes. Nanotechnology., 23(16), 165601.
Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S. and Chen, J. (2014). Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresour. Technol., 154, 209-214.
Zolgharnein, J., Shahmoradi, A., Zolgharnein, P. and Amani, S. (2016). Multivariate optimization and adsorption characterization of As(III) by using fraxinus tree leaves. Chem. Eng. Commun., 203, 210-223.