Convenient and Efficient Elimination of Heavy Metals from Wastewater Using Smart Pouch with Biomaterial

Document Type : Original Research Paper


1 Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, P.O.Box-131039, Murthal, Haryana, India

2 Department of Chemistry, Maharshi Dayanand University, P.O.Box-124001, Rohtak, Haryana, India,

3 Department of Chemistry, Deshbandhu College, University of Delhi, P.O.Box-110019, Delhi, India,


A newly developed Smart Pouch with enclosed biomaterial (Aloe vera and coconut husk powder) has been experimented for elimination of heavy metals i.e. (Pb2+, Cu2+, Ni2+ and Zn2+) from wastewater. The effect of concentration, pH, temperature, contact duration etc. was investigated using batch experiments which resulted that the Pouch may be accepted for convenient, efficient and low-cost accumulation of several heavy metals simultaneously from waste water. The maximum Pb removal was 99.99%, 93.21% for Cu, and for Ni, it was 91.97% whereas for Zn, 86.41% was obtained and also, the uptake capacity of pouch was quite sensitive towards initial metal concentration in the studied range of 10-200mg/L present in wastewater. The findings were further interpreted by quantum chemical study as theoretical support, various adsorption isotherms, FTIR, SEM, XRD, and physiochemical properties of metal ions to justify the synergized performance of new Pouch. A good correlation was found between experimental methods and theoretical findings.


Abdeen, Z., Mohammad, S. G. and Mohammad M. S. (2015). Adsorption of Mn (II) Ion on Polyvinyl Alcohol/Chitosan Dry Blending from aqueous solution. Environ. Nanotechnol. Monit. Manag., 3(5);1-9.
Ali, A. S., Kazi I. W. and Ullah, N. (2015). New Chelating Ion-Exchange Resin Synthesized via the Cyclopolymerization Protocol and Its Uptake Performance for Metal Ion Removal, Ind. Eng. Chem. Res., 54; 9689−9698.
Arcana M. I., Bundjali B., Yudistira Y., Iyan. Jariah, B. and Sukria, L. (2007). Study on Properties of New Pouchs from Polypropylene with Polycaprolactone and Their Biodegradability. Polymer J., 39 (12);1337–1344.
Arief, V. O., Trilestari, K. Sunarso, J.,  Indraswati, N. Ismadji, S. (2008). Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents:Characterization, Biosorption Parameters and Mechanism Studies, Clean, 36 (12);937 – 962.
Bueno, B. Y. M., Torem,  M. L., Molina  F. and de Mesquita L.M.S. (2008). Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: Equilibrium and kinetic studies. Minerals Eng., 21;65–75.
Chiellini, E., Corti, A., Antone S. and Baciu, R.(2006). Oxo-biodegradable carbon backbone polymers – oxidative degradation of polyethylene under accelerated test conditions. Polym. Degrad. Stabil., 91(11);2739–2747.
Dahiya,S. Lata,S. Kumar P. and Kumar, R. (2016). A descriptive study for corrosion control of low-alloy steel by Aloe vera extract in acidic medium, Corros Rev., 34; 241-248.
Das, S. K., Das A. R. and Guha, A. K. (2007). A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass.  Environ.  Sci. Technol., 41;8281– 8287.
Dronskowski, R.(2005). Computational Chemistry of Solid State Materials. Weinheim, Germany: Wiley-vch Verlag GmbH & Co. KGaA.
Fiol, N.,Villaescusa, I., Mart´─▒nez, M., Miralles, N., Poch, J. and Serarols, J. (2006). Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep. Purif. Technol., 50;132–140.
Foo K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chem Eng J.,156;2–10.
Freundlich, H. M. F. (1906). Uber Die Adsorption in Lasungen. J. Phy. Chem., 57;385-370.
Giusti, P., Lazzeri, L., Petris, S., Palla, M. and Cascone M.G. (1994). Collagen based new bioartificial polymeric materials. Biomater., 15;1229–1233.
Grimwood, B. E. and Ashman, F. (1975).Coconut palm products; their processing in developing countries.
Hablot, E. Matadi, R. Ahzi and S. Averous, L.(2010a) Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: Thermal, physical and mechanical properties. Compos. Sci. Technol., 70(3);504-509.
Haghseresht F. and Lu, G.(1998). Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels., 12;1100−1107.
Hameed, B. H.  Tan I. A.W. and Ahmad, A.L. (2008).Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon.  Chem Eng J., 144; 235–244.
He, Z. L., Yang, X. E. and Stoffella, P. J. (2011). Trace elements in agro ecosystems and impacts on the environment. J. Trace Elem. Med. Biol., 19;125–140. 
Ho, Y. S. Ng, J. C. Y. and McKay, G. (2000). Kinetics of pollutant sorption by biosorbents: review. Sep and Puri Mets., 29(2);189–232.
Huheey,E. Keiter E.A. and Keiter,R. L.(1993). Inorganic Chemistry: Principles of Structure and Reactivity, 4th edition. New York: HarperCollins College Publishers.
Kaushal,  A. and Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. J. environ. biotechnol. res., 6(1);96-104.
Langmuir,  I. (1916). The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J.  ACS., 38;2221-2295.
Lide, D. R. (1998). Handbook of Chemistry and Physics, 79th ed.; CRC Press: Boca Raton, FL.
Lukovits, E. ´lma´n F. Ka and Zucchi.(2001). Corrosion inhibitors-correlation between electronic structure and efficiency, Corrosion., 57;3–8.
Malik, R., Dahiya S. and lata,  S., (2017). An experimental and quantum chemical study of removal of utmostly quantified heavy metals in wastewater using coconut husk: A novel approach to mechanism, ‎Int. J. Biol. Macromolec., 98;139–149.

Malik, R. Lata, S. and Singhal, S. (2015). Removal Of Heavy Metal From Waste Water By The Use Of Modified Aloe Vera Leaf Powder, Int. J. Basic & Appl. Chem. Sci., 5(2);6-17.

Matadi, R., Ahzi,S., Vaudemond, R., Ruch,D. and Averous,L. (2010b).Yield behaviour of renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres, Compos Sci Technol., 70(3); 525-529.
Miles, C. A. and Bailey, A. J. (2004). Studies of the collagen-like peptide (Pro-Pro- Gly). J Mol Biol., 337;917–931.
Okafor, P.C., Okon, P.U.,Daniel, E.F. and Ebenso, E.E. (2012). Adsorption capacity of coconut (Cocos nucifera L.) shell for lead, copper, cadmium and arsenic from aqueous solutions. Int. J. Electrochem. Sci,7;12354-12369.
Pagnanelli, F. Mainelli, S.Veglio F. and Toro, L. (2003). Heavy metal removal by olive pomace: Biosorbent characterization and equilibrium modeling, J. Chem. Eng. Sci., 58; 4709 – 4717.
Pearson, R.G.(1988). Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem., 27 (4);734–740.
Pearson, R. G  (2005).Chemical Hardness and Density Functional Theory, J. Chem. Sci., 117(5);369–377.
Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou K., Stegmann, R. and Wang, J. Y. (2012). Adsorption of Cu(II) Ions from Aqueous Solutions on Biochars Prepared from Agricultural By-Products. J. Environ. Mngt., 96;35-42.
Phuong, N. T. Guinault A. and Sollogoub, C.(2010). Miscibility and morphology of poly(lactic acid)/poly(b-hydroxybutirate) blends. Int. Conf. Adv. Mater Process Technol., AIP Conf Proc., 1315;173–178.
Prasad M. and Saxena, S. (2004). Sorption mechanism of some divalent metal ions onto low-costmineral adsorbent. Ind Eng Chem Res. 43 ;1512-1522.
Quraishi M.A. and Sharma,H.K. (2002).4-Amino-3-butyl-5-mercapto-1,2,4-triazole: a new corrosion inhibitor for mild steel in sulphuric acid, Mater  Chem  Phys., 78;18–21.
Rao M. and Bhole, A. G. (2001). Chromium removal by adsorption using fly ash and bagasse. J. Indian Water Works Assoc., 33;97−100.
Reddy, N. and Yang,Y.(2005). Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol., 23 (1);22–27.
Romera,   E. (2007). Comparative study of biosorption of heavy metals using different types of algae, Bioresour Technol., 98; 3344 – 3353.
Sadeek, A., Negm, A.N., Hefnib H. H. H.  and Wahab,  M. M. A. (2015). Metal adsorption by agricultural biosorbents: Adsorption isotherm, kinetic and biosorbents chemical structures.
‎Int. J. Biol. Macromolec., 81;400–409.
Sastri V.S. and Perumareddi, J.R.(1997). Molecular orbital theoretical studies of some organic corrosion inhibitors. Corrosion., 53;617–622.
 Scott, G. (2000). ‘Green’ polymers. Polym Degrad Stabil., 68(1);1–7.
Sharrif, M. M. and Verma, S .K  (2011). Aloe vera, their chemicals composition and applications: a review. Int. J. Biol. Med. Res., 2;466–471.
Shen, J. C. and Duvnjak, Z. (2004). Effects of temperature and pH on adsorption isotherms for cupric and cadmium ions in their single and binary solutions using corncob particles as adsorbent, Sep. Sci Technol., 39;3023 – 3041.
Slatter, D. A. Miles C. A. and Bailey, A. J. (2003). Asymmetry in the triple helix of collagen-like heterotrimers confirms that external bonds stabilize collagen structure. J. Mol. Biol., 329;175–183.
Lima, E. B. C., Sousa, C. N. S., Meneses, L. N., Ximenes, N.C., Santos Júnior, M. A., Vasconcelos, G. S., Patrocínio, M. C. A., Macedo D. and Vasconcelos, S. M. M.(2015). Brazilian Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz.J. Med and Bio Res., 48(11); 953–964.
Sun, X. F., Wang, S. G. Liu, X. W. Gong, Bao W. X., N. Gao and B.Y. Zhang, H.Y. (2008). Biosorption of Malachite Green from aqueous solutions onto aerobic granules: Kinetic and equilibrium studies. Bioresour Technol., 99;3475-3483.
Wang, X. Sang, L. Luo D. and Li, X. (2011). From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B., 82; 233–240.
Wieser M.E. and Coplen, T.B. Atomic weights of the elements 2009. (IUPAC Technical Report), Pure Appl. Chem., 83(2);359-396.