Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India

Document Type : Original Research Paper

Author

Formerly at CSIR–National Geophysical Research Institute, Uppal Road, Hyderabad – 500007, India

Abstract

The Kolleru Lake is a famous Ramsar wetland of international significance. In this study heavy metal contents in water and sediment samples are reported. It is found that certain potentially toxic metal ions like chromium (4.5-80 µg/L), copper (1-20 µg/L), manganese (1-313 µg/L) and zinc (1.2-57 µg/L) are present in variable quantities in the lake water. When normalized with respect to concentration of each element in clean surface waters, the normalized ratio is found to be highly heterogeneous (chromium=4.5-80, copper=0.3-3.3, manganese=0.07-20.8, zinc= negligible to 2.8). At several places, the normalized ratio is greater than 1, indicating anthropogenic input.  The concentration of iron (4-20 µg/L) in water, however, is less compared to the clean surface waters.  Chemical analyses and quality assessment of Kolleru Lake sediments have been carried out through estimation of four pollution indices, which include enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (CF) and pollution load index (PLI). Evaluation of these contamination indices with respect to average sediment composition of Taylor & McLennan (2001) confirmed that the Kolleru Lake sediment is polluted with a number of heavy metals that include cobalt (EF=2, Igeo=0.64, CF=2.4) , chromium (EF=1.5, Igeo=0.18, CF=1.7), copper (EF=1.6, Igeo=0.29, CF=1.9), manganese (EF=1.3, Igeo=0, CF=1.4), vanadium (EF=1.5, Igeo=0.19, CF=1.7) and zinc (EF=1.5, Igeo=0, CF=1.5). The level of contamination, however, is minor to moderate and is in good agreement with the heavy metal chemistry of the lake water. Based on these results some measures for environmental rehabilitation of the lake and its surroundings have been proposed.

Keywords


Amaraneni, S. R. (1997). Studies on pollution problems of Kolleru Lake with special reference to pesticides, polycyclic aromatic hydrocarbons and heavy metals. unpublished Ph.D. Thesis, Andhra University, Vishakapatnam, India.
 
Amaraneni, S. R. and Pillala, R. R. (2000). Environmental impact of aquaculture on Kolleru lake.Indian J.  Environ. Toxicol., 10(1), 1–4.
 
Amaraneni, S. R. and Pillala, R. R.  (2001). Concentration of pesticide residue in tissues of fish from Kolleru lake, India. Environ. Toxicol., 16(6), 550–556.
 
Amira, W. and Leghouchi, E. (2018). Assessment of heavy metal pollution in sediments and their bioaccumulation in Phragmites australis from Nil river (Jijel-Algeria). Global NEST Journal, 20. Retrieved Sept. 15, 2018 from https://journal.gnest.org/sites/default/files/Submissions/gnest_02488/gnest_02488_proof.pdf
 
APHA (1995). Standard methods for the examination of water and wastewater. 19th edition, American Public Health Association, Washington, D. C.
 
Azeez, P. A., Ashok Kumar, S., Choudhury, B. C., Sastry, V. N. V. K., Upadhyay, S., Reddy K. M. and Rao, K. K. (2011). Report on the proposal for downsizing the Kolleru Wildlife Sanctuary (+5 to +3 feet contour). Submitted to the Ministry of Environment and Forests, Government of India. Retrieved Nov. 18, 2017 from www.thehindu.com/multimedia/.../Kolleru_Report9Apri_549380a.pdf‎.
 
Blaser, P., Zimmermann, S., Luster, J. and Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss Forest Soils. Sci. Tot. Environ., 249(1-3), 257–280.
 
Chakravarty, M. and Patgiri, A. D. (2009). Metal Pollution Assessment in Sediments of the
Dikrong River, N.E. India. J. Human Ecol., 27(1), 63–67.
 
Chandra Sekhar, K., Chary, N. S., Kamala, C. T., Raj, D. S. and Rao, A. S. (2003). Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish. Environ. Intl., 29(7), 1001–1008.
 
Chatterjee, M., Silva, F. E. V. and Sarkar, S. K. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environ. Intl., 33(3), 346–356.
 
Cunningham, S. D. and Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiol., 110(3), 715–719.
 
Dahdouh-Guebas, F., Collin, S., Lo Seen, D., Rönnbäck, P., Depommier, D., Ravishankar, T. and Koedam, N. (2006). Analysing ethnobotanical and fishery-related importance of mangroves of the East-Godavari Delta (Andhra Pradesh, India) for conservation and management purposes. J. Ethnobiol. Ethnomed.,2(1), 24.
 
Das Sharma, S. and Sujatha, D. (2016). Characterization of the water chemistry, sediment 13C and 18O compositions of Kolleru Lake—a Ramsar wetland in Andhra Pradesh, India. Environ. Monit. Assess., 188(7), 409.
 
Dhote, S. and Dixit, S. (2009). Water quality improvement through macrophytesa review. Environ. Monit. Assess., 152(1-4), 149–153.
 
Esmaeilzadeh, M., Karbassi, A. R. and Moattar, F. (2016). Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices. Acta Oceanol. Sinica, 35(10), 28– 36.
 
FAO (2015). Lakes and rivers key to livelihoods of millions. Food and Agriculture Organization of the United Nations. Retrieved Sept. 14, 2018 from http://www.fao.org/news/story/en/item/276122/icode/
Förstner, U. and Müller, G. (1973). Heavy metal accumulation in river sediments: a response to environmental pollution. Geoforum, 4(2), 53–61.
 
Freeze, R. A. and Cherry, J. A. (1979). Groundwater, Prentice Hall Inc., New Jersey, pp. 604.
 
Garbisu, C. and Alkorta, I. (2001). Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technol., 77(3), 229– 236.
 
Gupta, S. C., Rathore, G. S. and Mathura, G. C. D. (2001). Hydro-chemistry of Udaipur lakes. Indian J. Environ. Health, 43(1), 38–44.
 
Häkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimento-logical approach. Water Res., 14(8), 975–1001.
 
Hargalani, F. Z., Karbassi, A., Monavari, S. M. Azar, P. A. (2014). A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environmental Monitoring and Assessment, 186(4), 2329–2348.
Helmisaari, H. S., Salemaa, M., Derome, J., Kiikkilö, O., Uhlig, C. and Nieminen, T. M. (2007). Remediation of heavy metal contaminated forest soil using recycled organic matter and native woody plants. J. Environ. Quality, 36(4), 1145–1153.
 
Huy, N. Q., Luyen, T. V., Phe, T. M. and Mai, N. V. (2002) .Toxic elements and heavy metals in sediments in Tham Luong Canal, Ho Chi Minh City, Vietnam. Environ. Geol., 43, 836–841.
 
ISRO (2011). National Wetland Atlas: Andhra Pradesh. Space Applications Centre, Indian Space Research Organization, Ahmedabad, India.
 
Iwasaki, S. and Shaw, R. (2009). Linking human security to natural resources: Perspective from a fishery resource allocation system in Chilika lagoon, India. Sustain. Sci., 4(2), 281–292.
 
Karupadam, R. J., Sarin, R. and Ajaneyulu, Y. (2003). Distribution of trace metals and organic matter in the sediments of Godavary estuary of Kakinada Bay, East coast of India.
Water, Air, Soil Pollut., 150, 299– 305.
 
Koff, T., Vandel, E., Marzecová, A., Avi, E. and Mikomägi, A. (2016). Assessment of the effect of anthropogenic pollution on the ecology of small shallow lakes using the palaeolimnological approach. Estonian J. Earth Sci., 65(4), 221–233.
Krishna, A. K., Murthy, N. N. and Govil, P. K. (2007). Multielement Analysis of Soils by
Wavelength-Dispersive X-ray Fluorescence Spectrometry. Atomic Spectroscopy, 28(6), 202– 214.
 
Kumar, B., Shah, R. and Mukherjee, D. (2011). Geochemical distribution of heavy metals in sediments from sewage fed fish ponds from Kolkata Wetlands, India. Chem. Speciat. Bioavail., 23(1), 24–32.
 
Kwon, Y. T., Lee, C. W. and Ahn, B. Y. (2001). Sedimentation pattern and sediments bioavailability in a wastewater discharging area by sequential metal analysis. Microchem. J., 68 (2–3), 135–141.
Langmuir, D. (1997). Aqueous Environmental Geochemistry, Prentice Hall, New Jersey, pp. 600.
 
Lasat, M. M. (2000).Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J.Hazard.Subst. Res., 2, 5-1–5-25.
 
Martin, J. M. and Meybeck, M. (1979). Elemental mass balance of materials carried by major world rivers. Marine Chem., 7(3), 173–206.
 
Mastan, S. A. (2014). Heavy metals concentration in various tissues of two freshwater fishes, Labeo rohita and Channa striatus. African J. Environ. Sci. Tech., 8(2), 166–170.
 
Mohiuddin, K.M., Zakir, H.M., Otomo, K., Sharmin, S. and Shikazono, N. (2010). Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. Intl. J. Environ. Sci. Tech., 7 (1), 17–28.
 
Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geol. J., 2(3), 108–118.
 
Nesbitt, H. W. and Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta, 48(7), 1523–1534.
 
Nesbitt, H. W. and Young, G. M. (1989). Formation and diagenesis of weathering profiles. J. Geol., 97(2), 129–147.
 
Perunović, T., Stojanović, K., Kašanin-Grubin, M., Šajnović, A., Simić, V., Jovančićević, B. and  Brčeski, I. (2015).  Geochemical investigation as a tool in the determination of the potential hazard for soil contamination (Kremna Basin, Serbia). J. Serbian Chem. Soc.,80(8) 1087–1099.
 
Poh, S. C. and Tahir, N. M. (2017). The common pitfall of using enrichment factor in assessing soil metal pollution. Malaysian J. Anal. Sci., 21(1), 52–59.
 
Rao, K. N., Krishna, G. M. and Hema Malini, B. (2004). ‘Kolleru lake’ is vanishing – a revelation through digital processing of IRS-1D LISS-III sensor data. Curr. Sci., 86(9), 1312–1316.
 
Rao, T. G. and Govil, P.K. (1995). Merits of using barium as a heavy absorber in major element analysis of rock samples by XRF: new data on ASK-1 and ASK-2 reference samples. Analyst, 120(5), 1279 –1282.
 
Rudnick, R. L. and Gao, S. (2003). Composition of the continental crust. (In R. L. Rudnick (Ed.), Treatise in Geochemistry, v. 3, pp. 1-64, Elsevier, Amsterdam).
 
Salomons, W. and Förstner, U. (1984). Metals in the Hydrocycle. Springer-Verlag, pp. 349.
 
Schmidt, U. (2003). Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals. J. Environ. Quality, 32(6), 1939–1954.
 
Sinex, S.A. and Helz, G.R. (1981). Regional geochemistry of trace elements in Chesapeake Bay sediments. Environ. Geol., 3(6), 315–323.
 
Stephenson, M., Turner, G., Pope, P., Knight, A. and Tchobanoglous, G. (1980). The use and potential of aquatic species for wastewater treatment. Publ. No. 65, California State Water Resources Control Board, Sacramento, CA.
 
Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39(6), 611–627.
 
Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 28(8), 1273–1285.
 
Taylor, S. R. and McLennan, S. M. (2001). Chemical Composition and Element Distribution in the Earth’s Crust. (In Encyclopedia of Physical Sciences and Technology, v. 2, 697–719, Academic Press).
 
Tessier, A., Cambell, P. G. C. and Bission, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51, 844– 851.
 
Tomlinson, D. C., Wilson, J. G., Harris, C. R. and Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Res., 33(1-4), 566–575.
 
Turekian, K. K. and Wedepohl, K. H. (1961), Distribution of the elements in some major units of the earth’s crust. Bull. Geol. Soc. Am., 72(2), 175–192.
 
Ure, A. M. and Berrow, M. L. (1982). The elemental constituents of soils. (In Bowen, H. J. M. (Ed.), Environmental Chemistry, v. 2, pp. 94 – 204, The Royal Society of Chemistry).
 
USEPA (1983). Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020, Cincinnati, Ohio, USA.
Vaezi, A. R., Karbassi, A. R., Valavi, S. and Ganjali, M. R. (2015a). Ecological risk assessment of metals contamination in the sediment of the Bamdezh wetland, Iran. Intl. J. Environ. Sci. Tech., 12(3), 951–958.
Vaezi, A. R., Karbassi, A. R. and Fakhraee, M. (2015b). Assessing the trace metal pollution in the sediments of Mahshahr Bay, Persian Gulf, via a novel pollution index. Environ. Monit. Assess., 187(10), 613.
Vaezi, A. R., Karbassi, A. R., Habibzadeh, S. K., Heidari, M. and ValikhaniSamani, A. R. (2016). Heavy metal contamination and risk assessment in the riverine sediment. Indian J. Geo-Marine Sci., 45 (8), 1017–1023.
 
Vijayalakshmi, B. B. R. G. and Brahmaji Rao, P. (2017). Assessment of Heavy Metal distribution of Water and Sediments in Kolleru Lake, A.P. IOSR J. Pharm. Biol. Sci., 12(4), 40–46.
 
Zhang, C., Qiao, Q., Piper, J.D.A. and Huang, B. (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut., 159, 3057–3070.
 
Zhang, L. P., Ye, X. and Feng, H. (2007). Heavy metal contamination in Western Xiamen Bay sediments and its vicinity, China. Mar. Pollut. Bull., 54(7), 974–982.
 
Zutshi, D. P. and Khan, A. U. (1988). Eutrophication gradient in Dal lake, Kashmir. Indian J. Environ. Health, 30(4), 348–354.