Monitoring of SO2 column concentration over Iran using satellite-based observations during 2005-2016

Document Type : Original Research Paper


Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran


For the first time, sulfur dioxide concentration was monitored between 2005 and 2016 over Iran which is among the countries with a high SO2 emission rate in the world. To that end, SO2 column concentration at Planetary Boundary Layer (PBL) from Ozone Monitoring Instrument (OMI) was analyzed. OMI is a sensor onboard the Aura satellite which can measure daily SO2 concentration on the global scale. From OMI maps, 19 notable SO2 hotspots were detected over Iran. The results indicate that the most elevated level of SO2 among these 19 hotspots belong to Khark Island and Asaluye in Bushehr province, southwest of Iran. Annual trend analysis shows that SO2 concentration has been slightly augmented during 2005-2016 over this country. Distribution analysis of SO2 concentration over Iran showed that the most polluted provinces are Bushehr, Khuzestan and Ilam lied in the southwest of Iran. On the contrary, the lowest level of SO2 has observed over northwest of Iran at West and East Azerbaijan and Ardabil provinces. The correlation coefficient between total energy production in Iran and SO2 concentration from 2005 to 2016 is as high as ~0.7. Hence, it can be derived that energy production, most notably production of crude oil, plays a pivotal role in SO2 concentration over Iran.  


Afif, C., Chélala, C., Borbon, A., Abboud, M., Adjizian-Gérard, J., Farah, W., Jambert, C., Zaarour, R., Saliba, N.B. and Perros, P.E. (2008). SO2 in Beirut: air quality implication and effects of local emissions and long-range transport. Air Qual. Atmos. Hlth., 1, 167-178.
Beirle, S., Hörmann, C., Penning de Vries, M., Dörner, S., Kern, C. and Wagner, T. (2014). Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawaii. Atmos. Chem. Phys., 14, 8309-8322.
B.O.R.C. (2018). Introduction of Bandar Abbas Oil Refining Company. Retrieved August,  2018, from
Campion, R., Salerno, G.G., Coheur, P.-F., Hurtmans, D., Clarisse, L., Kazahaya, K., Burton, M., Caltabiano, T., Clerbaux, C. and Bernard, A. (2010). Measuring volcanic degassing of SO 2 in the lower troposphere with ASTER band ratios. J. Volcanol. Geoth. Res., 194, 42-54.
Carboni, E., Grainger, R., Walker, J., Dudhia, A. and Siddans, R. (2012). A new scheme for sulphur dioxide retrieval from IASI measurements: application to the Eyjafjallajökull eruption of April and May 2010. Atmos. Chem. Phys., 12, 11417-11434.
Eleftheriadis, K., Colbeck, I., Housiadas, C., Lazaridis, M., Mihalopoulos, N., Mitsakou, C., Smolik, J. and Ždímal, V. (2006). Size distribution, composition and origin of the submicron aerosol in the marine boundary layer during the eastern Mediterranean “SUB-AERO” experiment. Atmos. Environ., 40, 6245-6260.
ENERDATA, Y. (2018). Global Energy Statistical Yearbook 2018. Retrieved August,  2018, from
Fioletov, V., McLinden, C., Krotkov, N. and Li, C. (2015). Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys. Res. Lett., 42, 1969-1976.
Fioletov, V., McLinden, C., Krotkov, N., Moran, M. and Yang, K. (2011). Estimation of SO2 emissions using OMI retrievals. Geophys. Res. Lett., 38, L21811.
Fioletov, V., McLinden, C., Krotkov, N., Yang, K., Loyola, D., Valks, P., Theys, N., Van Roozendael, M., Nowlan, C. and Chance, K. (2013). Application of OMI, SCIAMACHY, and GOME‐2 satellite SO2 retrievals for detection of large emission sources. J. Geophys. Res. Atmos., 118, 11399-11418.
Fioletov, V.E. and McLinden, C.A.  (2016). Sulfur dioxide (SO 2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands. Atmos. Meas. Tech., 9, 2961.
Fioletov, V.E., McLinden, C.A., Krotkov, N., Li, C., Joiner, J., Theys, N., Carn, S. and Moran, M.D. (2016). A global catalogue of large SO 2 sources and emissions derived from the Ozone Monitoring Instrument. Atmos. Chem. Phys., 16, 11497.
Henney, L., Rodríguez, L. and Watson, I. (2012). A comparison of SO2 retrieval techniques using mini-UV spectrometers and ASTER imagery at Lascar volcano, Chile. B. Volcanol., 74, 589-594.
Jiang, J., Zha, Y., Gao, J. and Jiang, J. (2012). Monitoring of SO2 column concentration change over China from Aura OMI data. Int. J. Remote Sens., 33, 1934-1942.
JRC/PBL (2011). Emission Database for Global Atmospheric Research (EDGAR), release version 4.2.  Retrieved June,  2017, from
Klimont, Z., Smith, S.J. and Cofala, J. (2013). The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett., 8, 014003.
Krotkov, N., Carn, S., Krueger, A., Bhartia, P. and Yang, K. (2006). Band residual difference algorithm for retrieval of SO2 from the Aura Ozone Monitoring Instrument (OMI). IEEE Geosci. Remote S., 44, 1259–1266.
Krotkov, N., McLinden, C., Li, C., Lamsal, L., Celarier, E., Marchenko, S., Swartz, W., Bucsela, E., Joiner, J. and Duncan, B. (2015a). Aura OMI observations of regional SO 2 and NO 2 pollution changes from 2005 to 2014. Atmos. Chem. Phys., 15, 26555-26607.
Krotkov, N., Schoeberl, M., Morris, G., Carn, S. and Yang, K. (2010). Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption. J. Geophys. Res. Atmos., 115, D00L20.
Krotkov, N.A., Li, C. and Leonard, P. (2015b). OMI/Aura Sulfur Dioxide (SO2) Total Column L3 1 day Best Pixel in 0.25 degree x 0.25 degree V3, in: Greenbelt, M., USA, Goddard Earth Sciences Data and Information Services Center (GES DISC).  Retrieved June,  2017, from
LEELŐSSY, Á., MOLNÁR, F., IZSÁK, F., HAVASI, Á., LAGZI, I. and MÉSZÁROS, R. (2014). Dispersion modeling of air pollutants in the atmosphere: a review. Open Geosci., 6, 257-278.
Lu, Z., Streets, D.G., de Foy, B. and Krotkov, N.A. (2013). Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ. Sci. Technol., 47, 13993-14000.
Nikolić, D., Milošević, N., Mihajlović, I., Živković, Ž., Tasić, V., Kovačević, R. and Petrović, N. (2010). Multi-criteria analysis of air pollution with SO2 and PM10 in urban area around the copper smelter in Bor, Serbia. Water Air Soil Poll., 206, 369-383.
OPEC. (2017). Annual Report 2017. OPECNA. & Information Dept., Vienna, Austria. Retrieved August, 2018, from
OPEC. (2013). Annual Report 2013. OPECNA. & Information Dept., Vienna, Austria. Retrieved August, 2018, from
OPEC. (2009). Annual Report 2009. OPECNA. & Information Dept., Vienna, Austria. Retrieved August, 2018, from
OPEC. (2005). Annual Report 2005. OPECNA. & Information Dept., Vienna, Austria. Retrieved August, 2018, from
Parkinson, C., Ward, A., King, M. (2006). Earth science reference handbook: a guide to NASA’s earth science program and earth observing satellite missions.
Salmabadi, H.  and Saeedi, M. (2018). Determination of the transport routes of and the areas potentially affected by SO2 emanating from Khatoonabad Copper Smelter (KCS), Kerman province, Iran using HYSPLIT. Atmos. Pollut. Res., doi: 10.1016/j.apr.2018.08.008.
Smith, S.J., Aardenne, J.v., Klimont, Z., Andres, R.J., Volke, A. and Delgado Arias, S.  (2011). Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos. Chem. Phys., 11, 1101-1116.
S.P.G.C. (2018). Introduction of South Pars Gas Complex. Retrieved August, 2018, from
Theys, N., Campion, R., Clarisse, L., van Gent, J., Dils, B., Corradini, S., Merucci, L., Coheur, P., Van Roozendael, M. and Hurtmans, D. (2013). Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos. Chem. Phys., 13, 5945-5968
Wang, J., Park, S., Zeng, J., Ge, C., Yang, K., Carn, S., Krotkov, N. and Omar, A. (2013). Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations. Atmos. Chem. Phys., 13, 1895-1912.