Simulating the Influence of Greenhouse Gases on the Climate of West Africa

Document Type : Original Research Paper

Authors

Department of Physics, University of Ibadan, P.O. Box 22133, Ibadan, Nigeria

Abstract

The response of climate to perturbations in GHGs is location dependent. Six experiments: control (CTRL); double CH4; double CO2; double N2O; halved CFC11 and halved CFC12 were carried out to reveal the local area response to different GHGs levels in the atmosphere over West Africa. Double CH4, CO2 and N2O generally induce wetness but they also induce localized dryness at the hilly and mountainous areas of SW Ghana, Central Nigeria, Northern Cameroon and South-eastern Central African Republic. Increase in ground temperature is induced by double GHGs with intensified warming at the north by double CO2. However, patches of cooling are induced at the north. Changes in specific humidity induced by double CO2, CH4 and N2O are similar. Intensified tropical easterly jet is induced by double GHGs. A dipole anomaly of wind with positive at the lower latitude and negative at higher latitude is induced at the northern part of West Africa. Significant reduction in cloud water content is induced from 900 to 400 hPa and 0 and 15oN.

Keywords


Adams, O. K. (2016). Diversification of Nigeria Economy through Agricultural Production.IOSR-J. Econ. Finan., 7(6); 104-107.
 
Adeniyi, M. O. (2014). Sensitivity of different convection schemes in RegCM4.0 for simulation of precipitation during the Septembers of 1989 and 1998 over West Africa, Theor. Appl. Climatol., 115(1–2); 305–322.
 
Adeniyi, M. O. (2016). The consequences of the IPCC AR5 RCPs 4.5 and 8.5 climate change scenarios on precipitation in West Africa, Clim. Change, 139; 245–263.
 
Anderson, T. R., Hawkins, E. and Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour, 40(3); 178-187.
Arakawa, A. and Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31; 674–701.
 
Baede, A. P. M., Ahlonsou, E., Ding, Y. and Schimel, D. (2001). Climate system an overview, Bolvin, B. and Pollonas, S. (eds). In: Climate Change (2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 85-98.
 
Berntsen, T., Fuglestvedt, J., Myhre, G., Stordal, F. and Berglen, T. (2006). Abatement of greenhouse gases: Does location matter? Clim. Change, 74; 377-411.
Bousquet, P.,  Ciais P., Miller, J. B., Dlugokencky, E. J. Hauglustaine, D. A., Prigent, C. Van der Werf, G. R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathière, J. Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler S. C. and White J. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 44; 439–443.
Davidson, E. A. and Kanter, D. (2014). Inventories and scenarios of nitrous oxide emissions Environ. Res. Lett., 9; 105012.
 
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer., A. J., Haimberger, L., Healy, S. B., Hersbach, H., Ho´lm, E. V., Isaksen, L., Ka°llberg, P., Ko¨hler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. –J., Park, B. –K., Peubey, C., de Rosnay, P., Tavolato, C., The´paut, J. –N., d Vitart, F. (2011). The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137; 553–597.
 
Emanuel, K. A. (1991). A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48; 2313–2335.
 
 
Etminan, M., Myhre, G., Highwood, E. J. and Shine, K. P. (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophys. Res. Lett., 43, 12; 614–12,623.
 
 
Hansen, J., Kharecha, P., Sato, M., Masson-Delmotte, V., Ackerman, F., Beerling, D. J., Paul J. Hearty, P. J.,  Hoegh-Guldberg, O, Hsu S.-L., Parmesan,  C., Rockstrom J., Rohling, E. J., Sachs, J., Smith, P. Steffen, K., Van Susteren L., von Schuckmann,  K. and Zachos , J. C. (2013). Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 8(12); e81648.
 
Holtslag, A. A. M., de Bruijn, E. I. F. and Pan, H. L. (1990). A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev., 118; 1561–1575.
Karl, T. R. and Tremberth, K. E. (2003). Modern global climate change. Science, 302(5651); 1719-1723.

 Kiehl, J. T.,  Hack, J. J.  Bonan, G. B.  Boville, B. A.  Williamson, D. L. and  Rasch, P. J. (1998). The National Center for Atmospheric Research Community Climate Model: CCM3. JCLI., 11; 1131-1149.

Le Treut, H., Somerville, R., Cubasch, U., Ding,Y., Mauritzen, C., Mokssit, A., Peterson, T. and Prather, M. (2007). Historical overview of climate change science. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.(eds),Climate Change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.
 
Lin, X., Trainer, M. and Liu, S.C. (1988). On the non-linearity of the tropospheric ozone production, J. Geophys. Res., 93; 15, 879–15,888.
 
McMichael, A. J. (2001). Human frontiers, environments and disease. Cambridge University Press, UK.
 
 Pal, J. S., Small, E. E. and Eltahir, E. A. B. (2000). Simulation of regional-scale water and energy  budgets: representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res.-Atmos., 105(D24); 29,579–29,594.
 
Ramanathan, V. and Feng, Y. (2009). Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos. Environ., 43; 37-50.
 
Skinner, C. B. and Diffenbaugh, N. S. (2014). Projected changes in African easterly wave intensity and track in response to greenhouse forcing. Proc. Nal. Acad. Sci., USA, 111(19); 6882-6887.
 
Stainforth, D. A., Allen, M. R., Tredge, E. R. and Smith, L. A. (2007). Confidence, Uncertainty and Decision-Support Relevance in Climate Predictions.  Philos. Trans. R. Soc. Lond. A 365; 2145–61.
 
Strangeways, I. (2011).The greenhouse effect: a closer look. Weather, 66(2); 43-48.
 
Suberu O. J., Ajala O. A., Akande M. O., Olure-Bank Adeyinka (2015). Diversification of the Nigerian Economy towards a Sustainable Growth and Economic Development. Int. J. Econ., Fin. Man. Sci. 3(2); 107-114.
 
Watson, R. T. and McMichael, A. J. (2001). Global climate change-the latest assessment: Does global warming warrant a health warning? Global Change Human Health 2; 64–75.
Zaehle, S., Ciais, P., Friend, A. D. and Prieur, V. (2011). Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nature Geosci., 4(9); 601-605.
 
Zeng, X., Zhao, M. and Dickinson, R. E. (1998). Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data, J. Climatol., 11; 2628–2644.
 
Zhang, H., Bai, X., Xue, J., Chen, Z., Tang, H. and Chen, F. (2013). Emission of CH4 and N2O under different tillage systems from double-cropped paddy fields in southern China. PLoS One, 8(6); e65277.
 
Zhuang, Q., Melillo, J. M., Mcguire, A. D., Kicklighter, D. W., Prinn, R. G., Steudler, P. A., Felzer, B. S., and Hu, S. (2007). Net emissions of CH4 and CO2 in Alaska: implications for the region’s greenhouse gas budget. Ecol. Appl., 17(1);  203–212.