The Evaluation of Tropospheric Ozone Formation in the Downwind of the South Pars Industrial Zone

Document Type: Original Research Paper

Authors

School of Environmental Engineering, College of Engineering, University of Tehran, P.O.Box 14155-6135, Tehran, Iran.

Abstract

Hydrocarbon Processing Industries (HPIs) emit large amounts of highly reactive hydrocarbons and Nitrogen Oxides to the atmosphere. Such simultaneous emissions of ozone precursors result in rapid and high yields ozone (O3) formation downwind. The climate of the Middle East has been shown to be favorable for O3 formation in summer. There are also vast activities in processing oil and gas in this region. This study aimed to investigate the influence of HPIs located in the Middle East on ozone formation. We chose the South Pars Zone (SPZ) located in the coastal area of the Persian Gulf with concentrated HPIs as a case study. To do this, after developing an emission inventory for O3 precursors, we used OZIPR, a Lagrangian photochemical model, coupled with SAPRC-07 chemical mechanism to describe the effects of HIPs on ozone formation in the SPZ and downwind area from June to August of (2017).
Results indicate that the SPZ has a far-reaching and wide-ranging impact on O3 formation in downwind areas and an area at a distance of 300 km can be affected profoundly (Average 0.06 ppm and maximum increase 0.24 ppm). Given the large numbers of HPIs located in the Middle East, we predict that the transport of O3 and its precursors from this region play an important role in the ozone air pollution in a much wider area and the role of these industries should be taken into account for regional and interregional ozone concentration modeling.

Keywords


Ahmadov, R., McKeen, S., Trainer, M., Banta, R., Brewer, A., Brown, S., Edwards, P.M., De Gouw, J.A., Frost, G.J., Gilman, J. and Helmig, D. (2015). Understanding high wintertime ozone pollution events in an oil-and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 15(1), pp.411-429

Allen, D. T. (2017). Combining innovative science and policy to improve air quality in cities with refining and chemicals manufacturing: The case study of Houston, Texas, USA. Frontiers of Chemical Science and Engineering, 11(3), 293-304

Alvim, D.S., Gatti, L.V., Corrêa, S.M., Chiquetto, J.B., Santos, G.M., de Souza Rossatti, C., Pretto, A., Rozante, J.R., Figueroa, S.N., Pendharkar, J. and Nobre, P., )2018(. Determining VOCs reactivity for ozone forming potential in the megacity of São Paulo. Aerosol and Air Quality Research, 18(9), pp.2460-2474.

Auvray, M., Bey, I. (2005). Long-range transport to Europe: Seasonal variations and implications for the European ozone budget. Journal of Geophysical Research: Atmospheres 110(D11).

Barkley, M.P., González Abad, G., Kurosu, T.P., Spurr, R., Torbatian, S., Lerot, C. (2017). OMI air-quality monitoring over the Middle East. Atmospheric Chemistry and Physics 17(7), 4687-4709

Brantley, H.L., Thoma, E.D. and Eisele, A.P., )2015.( Assessment of volatile organic compound and hazardous air pollutant emissions from oil and natural gas well pads using mobile remote and on-site direct measurements. Journal of the Air & Waste Management Association, 65(9), pp.1072-1082.

Carter, W.P. (2008). Development of an improved chemical speciation database for processing emissions of volatile organic compounds for air quality models. Center for Environmental Research and Technology (CE-CERT), University of California, Riverside. http://www. engr. ucr. edu/~ carter/emitdb.

Carter, W.P, (2010) Development of the SAPRC-07 chemical mechanism. Atmospheric Environment.44(40):5324-35

Couzo E, Jeffries HE, Vizuete W. (2013) Houston’s rapid ozone increases: preconditions and geographic origins. Environmental Chemistry. Jun 28;10(3):260-8.

Czader, B.H., Byun, D.W., Kim, S.T. and Carter, W.P., (2008(. A study of VOC reactivity in the Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical mechanism. Atmospheric Environment, 42(23), pp.5733-5742.

da Silva, C.M., da Silva, L.L., Corrêa, S.M. and Arbilla, G., )  2018.( A minimum set of ozone precursor volatile organic compounds in an urban environment. Atmospheric Pollution Research, 9(2), pp.369-378.

Daum, P.H., Kleinman, L.I., Springston, S.R., Nunnermacker, L., Lee, Y.N., Weinstein-Lloyd, J., Zheng, J., Berkowitz, C.M. (2003). A comparative study of O3 formation in the Houston urban and industrial plumes during the 2000 Texas Air Quality Study. Journal of Geophysical Research: Atmospheres 108 (D23).

EASTERN RESEARCH GROUP, I. Air Emissions Inventory Improvement Program (EIIP) [Online]. https://www.epa.gov/air-emissions-inventories/air-emissions-inventory-improvement-program-eiip: EPA. )1997(.

Edwards, P.M., Brown, S.S., Roberts, J.M., Ahmadov, R., Banta, R.M., Dubé, W.P., Field, R.A., Flynn, J.H., Gilman, J.B., Graus, M. and Helmig, D., (2014.( High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 514 (7522), p.351.

Eisele, A., Hannigan, M., Milford, J., Helmig, D., Milmoe, P., Thomas, G., Williams, S. and Brodin, M., )2009(. Understanding air toxics and carbonyl pollutant sources in Boulder County, Colorado. EPA Technical Report.

EPA. )1999(. A Simplified Approach for Estimating Secondary Production of Hazardous Air Pollutants (HAPs) Using the OZIPR Model. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency (EPA). Research Triangle Park, NC.

Field, R.A., Soltis, J., McCarthy, M.C., Murphy, S. and Montague, D.C., )2015(. Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter. Atmospheric Chemistry and Physics, 15(6), pp.3527-3542.

Fountoukis, C., Ayoub, M. A., Ackermann, L., Perez-Astudillo, D., Bachour, D., Gladich, I., & Hoehn, R. D.,)2018( Vertical Ozone Concentration Profiles in the Arabian Gulf Region during Summer and Winter: Sensitivity of WRF-Chem to Planetary Boundary Layer Schemes. Aerosol and Air Quality Research, 18, 1183-1197.

Ge, S., Wang, S., Xu, Q. and Ho, T., )2018(. Ozone impact minimization through coordinated scheduling of turnaround operations from multiple olefin plants in an ozone nonattainment area. Atmospheric Environment, 176, pp.47-53.

Gery, M., Crouse, R. (1991). User's guide for executing OZIPR. US Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory.

Gilman, J.B., Lerner, B.M., Kuster, W.C. and De Gouw, J.A., )2013(. Source signature of volatile organic compounds from oil and natural gas operations in northeastern Colorado. Environmental science & technology, 47(3), pp.1297-1305.

Guarieiro, L.L.N., Amparo, K.K.S., Figueirêdo, I.S. and de Andrade, J.B., (2017). Use and Application of Photochemical Modeling to Predict the Formation of Tropospheric Ozone. REVISTA VIRTUAL DE QUIMICA, 9(5), pp.2082-2099.

Kleinman, L.I., Daum, P., Imre, D., Lee, Y.N., Nunnermacker, L., Springston, S., Weinstein-Lloyd, J., Rudolph, J. (2002). Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of high ozone concentration in Houston. Geophysical Research Letters 29(10).

Lelieveld, J., Hoor, P., Jöckel, P., Pozzer, A., Hadjinicolaou, P., Cammas, J.-P., Beirle, S. (2009). Severe ozone air pollution in the Persian Gulf region. Atmospheric Chemistry & Physics 9(4).

Li, Q., Jacob, D.J., Logan, J.A., Bey, I., Yantosca, R.M., Liu, H., Martin, R.V., Fiore, A.M., Field, B.D., Duncan, B.N. (2001). A tropospheric ozone maximum over the Middle East. Geophysical Research Letters 28(17), 3235-3238.

Lin, X., Trainer, M., Liu, S. (1988). On the nonlinearity of the tropospheric ozone production. Journal of Geophysical Research: Atmospheres 93(D12), 15879-15888.

Liu, J.J., Jones, D., Worden, J.R., Noone, D., Parrington, M., Kar, J. (2009). Analysis of the summertime buildup of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. Journal of Geophysical Research: Atmospheres 114(D5).

Liu, S.C., Trainer, M., Fehsenfeld, F.C., Parrish, D.D., Williams, E.J., Fahey, D.W., Hubler, G., Murphy, P.C., 1987. Ozone production in the rural troposphere and the implications for regional and global ozone distributions. Journal of Geophysical Research 92, 4191Ð4207.

McDuffie, E.E., Edwards, P.M., Gilman, J.B., Lerner, B.M., Dubé, W.P., Trainer, M., Wolfe, D.E., Angevine, W.M., deGouw, J., Williams, E.J. and Tevlin, A.G., )2016(. Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research: Atmospheres, 121(14), pp.8712-8729.

Milt, A., Milano, A., Garivait, S. and Kamens, R.,) 2009(. Effects of 10% biofuel substitution on ground level ozone formation in Bangkok, Thailand. Atmospheric Environment, 43(37), pp.5962-5970.

Moradzadeh, M., Ashrafi, K. and Shafepour, M.,)2018(. Source Apportionment Of High Reactive Volatile Organic Compounds In a Region With The Massive Hydrocarbon Processing Industries. Environmental Energy and Economic Research, 2(1), pp.37-49.

RTIINTERNATIONAL )2011(. Emissions Estimation Protocol for Petroleum Refineries.

Ryerson, T., Trainer, M., Angevine, W., Brock, C., Dissly, R., Fehsenfeld, F., Frost, G., Goldan, P., Holloway, J., Hübler, G. (2003). Effect of petrochemical industrial emissions of reactive alkenes and NOx on tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research: Atmospheres 108(D8).

Saunders, S.M., Jenkin, M.E., Derwent, R., Pilling, M.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A) (2003). tropospheric degradation of non-aromatic volatile organic compounds. Atmospheric Chemistry and Physics 3(1), 161-180.

Sexton, K., Westberg, H. (1983). Photochemical ozone formation from petroleum refinery emissions. Atmospheric Environment (1967) 17(3), 467-475.

Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment 33(12), 1821-1845.

Smoydzin, L., Fnais, M., Lelieveld, J. (2012). Ozone pollution over the Arabian Gulf--role of meteorological conditions. Atmospheric Chemistry & Physics Discussions 12(2).

Spohn, T.K. and Rappenglück, B., (2015). Tracking potential sources of peak ozone concentrations in the upper troposphere over the Arabian Gulf region. Atmos. Environ. 101: 257–269.

Stavrakou, T., Müller, J.F., Boersma, K.F., De Smedt, I. and Van Der A, R.J., (2008(.Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns. Geophysical Research Letters, 35(10).

Stein AF, Draxler RR, Rolph GD, Stunder BJ, Cohen MD, Ngan F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society. Dec;96(12):2059-77.

Trainer, M., Parrish, D.D., Buhr, M.P., Norton, R.B., Fehsenfeld,F.C., Anlauf, K.G., Bottenheim, J.W., Tang, Y.Z.,Wiebe, H.A., Roberts, J.M., Tanner, R.L., Newman, L.,Bowersox, V.C., Maugher, J.M., Olszyna, K.J., Rodgers,M.O., Wang, T., Berresheim, H., Demerjian, K., (1993). Correlation of ozone with NOy in photochemically aged air. Journal of Geophysical Research 98, 2917Ð2926.

Van Der A, R.J., Eskes, H.J., Boersma, K.F., Van Noije, T.P.C., Van Roozendael, M., De Smedt, I., Peters, D.H.M.U. and Meijer, E.W., )2008(. Trends, seasonal variability and dominant NOx source derived from a ten year record of NO2 measured from space. Journal of Geophysical Research: Atmospheres, 113(D4).

Vereecken, L., Aumont, B., Barnes, I., Bozzelli, J.W., Goldman, M.J., Green, W.H., Madronich, S., Mcgillen, M.R., Mellouki, A., Orlando, J.J. and Picquet-Varrault, B., (2018(. Perspective on Mechanism Development and Structure-Activity Relationships for Gas-Phase Atmospheric Chemistry. International Journal of Chemical Kinetics, 50(6), pp.435-469.

Whitten, G.Z., Hogo, H., Killus, J.P. (1980). The carbon-bond mechanism: a condensed kinetic mechanism for photochemical smog. Environmental science & technology 14(6), 690-700.

Wild, O., Akimoto, H. (2001). Intercontinental transport of ozone and its precursors in a three-dimensional global CTM. Journal of Geophysical Research: Atmospheres 106(D21), 27729-27744.

Worden, J., Jones, D., Liu, J., Parrington, M., Bowman, K., Stajner, I., Beer, R., Jiang, J., Thouret, V., Kulawik, S. (2009). Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. Journal of Geophysical Research: Atmospheres 114(D13).

Yarwood, G., Jung, J., Whitten, G.Z., Heo, G., Mellberg, J., Estes, M. (2010). Updates to the Carbon Bond mechanism for version 6 (CB6). In: 2010 CMAS Conference, Chapel Hill, NC. October. (http://www. cmascenter. org/conference/2010/abstracts/ emery_updates_carbon_2010. pdf).