Assessment of Converter Sludge from Esfahan Steel Company as a Persulfate Nano-Activator for Permeable Reactive Barriers (Prbs) in Landfill Leachate Treatment

Document Type: Original Research Paper

Authors

Graduate Faculty of Environment, University of Tehran, P.O.Box 1417853111, Tehran, Iran

Abstract

The present research studies the performance of Converter Sludge (CL)as a nano-activator of persulfate (PS) in Permeable Reactive Barrier (PRB) as an in-situ technology for leachate treatment.In batch experiments, the acidic conditions (pH = 3) have been the most suitable for removal operations, where COD and NH3 removal efficiencies are 69.15% and 60.96%, respectively. The Box–Behnken design (BBD) has been employed to optimize three parameters, namely PS/ COD ratio, CS dose, and pore volume (PV), using COD and NH3 of leachate landfill as the target pollutant. The BBD is considered a satisfactory model to optimize the process. Under optimal conditions (PS/COD ratio: 3.47, CS dose: 3.09 g L-1,and PV: 4.27), the measured values of the COD and NH3 removal efficiencies have been 74.2 and 66.8, respectively, all within the 95%-prediction intervals, which indicate the model’s success in predicting removal values. The biodegradability (BOD5/COD) of the real leachate has been enhanced from 0.25 to 0.77, with the toxicity of real leachate getting decreased by more than 90%.

Keywords


Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y. and Al-Rekabi, W. S. (2009). Review on landfill leachate treatments. American Journal of Applied Sciences., 6(4); 672–684.

Abhayawardana, G. P. R. (2015). Removal of Lead in Landfill Leachate using Permeable Reactive Barriers with Natural Red Earth and Peat. The Institution of Engineers, Sri Lan., XLVIII(4); 51–57.

Abu Amr, S. S., Aziz, H. A., Adlan, M. N. and Bashir, M. J. K. (2013). Pretreatment of stabilized leachate using ozone/persulfate oxidation process. Chemical Engineering Journal., 221; 492–499

Ahmad, A., Gu, X., Li, L., Lv, S., Xu, Y. and Guo, X. (2015). Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite. Environmental Science and Pollution Research., 22(22); 17876–17885.

Al-Shamsi, M. A. and Thomson, N. R. (2013). Treatment of a trichloroethylene source zone using persulfate activated by an emplaced nano-Pd-Fe0zone. Water, Air, and Soil Pollution., 224(11);1-12.

Bartzas, G., Komnitsas, K. and Paspaliaris, I. (2006). Laboratory evaluation of Fe0 barriers to treat acidic leachates. Minerals Engineering., 19(5); 505–514.

Bhalla, B., Saini, M. S., Jha, M. K., Scientist, C., Gujral, P. and City, S. (2014). Assessment of industrial byproducts as permeable reactive barriers for landfill leachate Management. International Journal of Research in Engineering and Technology., 3(3); 637–648.

Bozkurt, M. A., Akdeniz, H., Keskin, B. and Yilmaz, I. H. (2006). Possibilities of using sewage sludge as nitrogen fertilizer for maize. Acta Agriculturae Scandinavica Section B-Soil and Plant Science., 56(2); 143–149.

Cao, J., Zhang, W.-X., Brown, D. G. and Sethi, D. (2008). Oxidation of Lindane with Fe(II)-Activated Sodium Persulfate. Environmental Engineering Science., 25(2); 221–228.

Chiemchaisri, C., Chiemchaisri, W. and Witthayapirom, C. (2015). Remediation of MSW landfill leachate by permeable reactive barrier with vegetation. Water Science and Technology., 71(9); 1389–1397.

Chou, Y. C., Lo, S. L., Kuo, J. and Yeh, C. J. (2013). Derivative mechanisms of organic acids in microwave oxidation of landfill leachate. Journal of Hazardous Materials., 254255(1); 293–300.

Chung, H. I., Kim, S. K., Lee, Y. S. and Yu, J. (2007). Permeable reactive barrier using atomized slag material for treatment of contaminants from landfills. Geosciences Journal., 11(2); 137–145.

Czurda, K. A. and Haus, R. (2002). Reactive barriers with fly ash zeolites for in situ groundwater remediation. Applied Clay Science., 21(2); 13–20.

Daoud, W., Ebadi, T. and Fahimifar, A. (2015). Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer. Water Science and Technology., 71(5); 667–674.

Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C. and Zhou, S. (2013). Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water. International Journal of Environmental Science and Technology., 11(4; 881–890.

Deng, Y. and Ezyske, C. M. (2011). Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Research., 45(18); 6189–6194.

Devi, L. G., Kumar, S. G., Raju, K. S. A. and Rajashekhar, K. E. (2010). Photo-Fenton and photo-Fenton-like processes for the degradation of methyl orange in aqueous medium : Influence of oxidation states of iron., 64(3); 378–385.

Diao, Z., Xu, X., Chen, H., Jiang, D., Yang, Y., Kong, L. and Liu, L. (2016). Simultaneous removal of Cr ( VI ) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron : Reactivity and mechanism. Journal of Hazardous Materials., 316; 186–193.

Fang, G., Dionysiou, D. D., Al-abed, S. R. and Zhou, D. (2013). Applied Catalysis B : Environmental Superoxide radical driving the activation of persulfate by magnetite nanoparticles : Implications for the degradation of PCBs. Applied Catalysis B, Environmental., 129; 325–332.

Furman, O. S., Teel, A. M. Y. L. and Watts, R. J. (2010). Mechanism of Base Activation of Persulfate., (509); 6423–6428.

Govindan, K., Raja, M., Maheshwari, S. U. and Noel, M. (2014). Analysis and understanding of amido black 10B dye degradation in aqueous solution by electrocoagulation with the conventional oxidants peroxomonosulfate, peroxodisulfate and hydrogen peroxide. Environ. Sci.: Water Res. Technol., 1(1); 108–119.

Hilles, A. H., Abu Amr, S. S., Hussein, R. A., El-Sebaie, O. D. and Arafa, A. I. (2016). Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management., 166; 493–498.

Hou, L., Zhang, H. and Xue, X. (2012). Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water. Journal of Environmental Sciences (China)., 26(6); 1267–1273.

House, D. A. (1962). Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chemical Reviews., 62(3); 185–203.

Huling, S. G., Ko, S., Park, S. and Kan, E. (2011). Persulfate oxidation of MTBE- and chloroform-spent granular activated carbon ଝ. Journal of Hazardous Materials., 192(3); 1484–1490.

Huling, S. G. and Pivetz, B. E. (2006). Engineering issue paper: in-situ chemical oxidation. Washington: U.S. EPA., 2006.

Joanna, F. and Kazimierz, G. (2013). Evaluation of zeolite-sand mixtures as reactive materials protecting groundwater at waste disposal sites. Journal of Environmental Sciences (China)., 25(9); 1764–1772.

Jun, D., Yongsheng, Z., Weihong, Z. and Mei, H. (2009). Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. Journal of Hazardous Materials., 161(1); 224–230.

Karchegani, S. M., Hoodaji, M. and Kalbasi, M. (2014). The effect of steel converter slag application along with sewage sludge in iron nutrition and corn plant yield., 3(Iii); 96–104.

Karimian, N., Kalbasi, M. and Hajrasuliha, S. (2012). Effect of converter sludge , and its mixtures with organic matter , elemental sulfur and sulfuric acid on availability of iron , phosphorus and manganese of 3 calcareous soils from central Iran., 7(4); 568–576.

Kolthoff, I. M. and Miller, I. K. (1951). The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium1, 899(6).

Kumar, A., Prasad, B. and Mishra, I. M. (2008). Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design. Journal of Hazardous Materials., 150(1); 174–182.

Oh, B. T., Lee, J. Y. and Yoon, J. (2007). Removal of contaminants in leachate from landfill by waste steel scrap and converter slag. Environ Geochem Health., 29; 331–336.

Liang, C., Bruell, C. J., Marley, M. C.and Sperry, K. L. (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere., 55(9); 1213–1223.

Liang, C. and Guo, Y. Y. (2012). Remediation of diesel-contaminated soils using persulfate under alkaline condition. Water, Air, and Soil Pollution., 223(7); 4605–4614.

Liang, C., Wang, Z. S. and Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere., 66(1); 106–113.

Lin, Y. T., Liang, C. and Chen, J. H. (2011). Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere., 82(8); 1168–1172.

Liu, D., Xiu, Z., Liu, F., Wu, G., Adamson, D., Newell, C., … Alvarez, P. J. (2013). Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. Journal of Hazardous Materials., 262; 456–463.

Liu, J., Zeng, N. and Xu, W. (2011). Effects of the Use of Permeable Barrier for Landfill Leachate Treatment. Journal of Water and Environment Technology., 9(2); 209–214.

Madani, K., AghaKouchak, A. and Mirchi, A. (2016). Iran’s Socio-economic Drought: Challenges of a Water-Bankrupt Nation. Iranian Studies., 49(6); 997–1016.

Mokhtarani, N., Khodabakhshi, S. and Ayati, B. (2016). Optimization of photocatalytic post-treatment of composting leachate using UV/TiO2. Desalination and Water Treatment., 57(47); 22232–22243.

Monteagudo, J. M., Durán, A., González, R. and Expósito, A. J. (2015). In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2. Applied Catalysis B: Environmental., 176177; 120–129.

Nachiappan, S. and Gopinath, K. P. (2015). Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system. Journal of Environmental Chemical Engineering., 3(3); 2229–2235.

NRC. (1999). Groundwater and Soil Cleanup: Improving Management of Persistent Contaminants. Washington: National Academy Press, 1999.

Ortiz, N., Pires, M. A. F. and Bressiani, J. C. (2001). Use of steel converter slag as nickel adsorber to wastewater treatment. Waste Management. ,21; 631–635.

Pazoki, M., Abdoli, M. A., Karbassi, A., Mehrdadi, N. and Yaghmaeian, K. (2014). Attenuation of municipal landfill leachate through land treatment. International Journal of Environmental Health Science & Engineering., 1(12); 1–8.

Prakash .M, J., Manikandan, S., Thirugnanasambandham, K., Vigna Nivetha, C. and Dinesh, R. (2013). Box-Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydrate Polymers., 92(1); 604–611.

Ranjbari, A. and Mokhtarani, N. (2018). Post treatment of composting leachate using ZnO nanoparticles immobilized on moving media. Applied Catalysis B: Environmental., 220; 211–221.

Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F. and Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials., 150(3); 468–493.

Romero, A., Santos, A., Vicente, F. and González, C. (2010). Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chemical Engineering Journal., 162(1); 257–265.

Shiying, Y., Wang, P., Yang, X., Wei, G., Zhang, W. and Shan, L. (2009). A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of Environmental Sciences., 21(9); 1175–1180.

Siegrist, R. L., Crimi, M. and Simpkin, T. J. (2011). In situ chemicaloxidation for groundwater remediation. NewYork: Springer., 2011.

Silveira, J. E., Barreto-Rodrigues, M., Cardoso, T. O., Pliego, G., Munoz, M., Zazo, J. A. and Casas, J. A. (2017). Nanoscale Fe/Ag particles activated persulfate: Optimization using response surface methodology. Water Science and Technology., 75(9); 2216–2224.

Soubh, A. M., Baghdadi, M., Abdoli, M. A. and Aminzadeh, B. (2018). Activation of Persulfate Using an Industrial Iron-Rich Sludge as an Efficient Nanocatalyst for Landfill. Catalysts., 8(5); 218.

Soubh, A. and Mokhtarani, N. (2016). The post treatment of composting leachate with a combination of ozone and persulfate oxidation processes. Rsc Advances, 6(80); 76113–76122.

Van-Nooten, T., Diels, L. and Bastiaens, L. (2010). Design of a multibarrier for the treatment of landfill leachate contamination: laboratory column evaluation. 4th International Symposium: Permeable Reactive Barriers and Reactive Zones., 42(23); 34.

Virtanen, S., Schmuki, P., Davenport, A. J. and Vitus, C. M. (1997). Dissolution of Thin Iron Oxide Films Used as Models for Iron Passive Films Studied by In Situ X-Ray Absorption Near-Edge Spectroscopy. Journal of The Electrochemical Society., 144(1); 198.

Yan, J., Lei, M., Zhu, L., Anjum, M. N., Zou, J. and Tang, H. (2011). Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. Journal of Hazardous Materials., 186(2–3); 1398–1404.

Yang, S., Yang, X., Shao, X., Niu, R. and Wang, L. (2011). Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. Journal of Hazardous Materials., 186(1); 659–666.

Zhen, G., Lu, X., Zhao, Y., Chai, X. and Niu, D. (2012). Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation. Bioresource Technology., 116; 259–265.