The Study of CO Symptoms' Impacts on Individuals, Using GIS and Agent-based Modeling (ABM)

Document Type : Original Research Paper

Authors

1 Department of GIS & RS, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Civil Engineering, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

3 Graduate Faculty of Environment, University of Tehran, Tehran, Iran

Abstract

The purpose of this study is to use both agent-based modeling as a new method in modeling dynamic phenomena and GIS to show the effects of carbon monoxide (CO) on individuals in the city of Tehran. After collecting the latest information about the severity of carbon monoxide pollutants on different days, one of the days with a very high severity of this pollutant has been selected for investigation and the interpolation map of its data has been developed via IDW method in ArcGIS software environment, which is then re-classified with the NetLogo software environment used to run the agent-based model. At this stage, the agents are randomly produced in four different age groups in the environment and begin moving with the onset of the running process in the environment. Also, the symptoms, caused by the pollution effects on the agents, appear in form of changes in color and are based on carboxyhemoglobin (COHb) levels (percentage) of each. The results indicate that among the considered older age groups, the members of the age group above 65, have had been mostly affected by pollution and the effect of pollution on the agents of the age group of 13 to 30 years old has been less than the other groups.

Keywords


  Abar, S., Theodoropoulos, G. K., Lemarinier, P. and O’Hare, G. M. P. (2017). Agent Based Modelling and Simulation tools: A review of the state-of-art software. Comput. Sci. Rev., 24; 13-33.
Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S. M. and  Williams, P. B. (2004). Health effects of air pollution. Environ. Occup. Respir. Disord., 114(5); 1116-23.
Brauer, M., Hoek, G., Smit, J., Jongste, J.C., Postma, D.S., Gerritsen, J., Kerkhof, M. and Brunekreef, B. (2007). Air Pollution and the Development of Asthma, Allergy and Respiratory Infections in a Birth Cohort.  Eur. Respir. J., 29; 879–888.
Bolouri, S., Vafaeinejad, A. R., Alesheikh, A. A. and Aghamohammadi, H. (2018). The ordered capacitated multi-objective location-Allocation problem for fire stations using spatial optimization. ISPRS Int. J. Geo-Inf., 7(2); 1-44.
Barn, P., Giles, L., Heroux, M. and Kosatsky, T. (2018). A review of the experimental evidence on the toxicokinetics of carbon monoxide: the potential role of pathophysiology among susceptible groups. Environ. Health., 17; 13.
Crooks, A. T., Heppenstall, A. J., See, L., Batty, M. (2012). Agent-Based Models of Geographical Systems. (New York: Springer Science)
Esposito, S., Galeone, C., Lelii, M., Longhi, B., Ascolese, B., Senatore, L., Prada, E., Montinaro, V., Malerba, S., Patria, M. F. and Principi, N. (2014). Impact of air pollution on respiratory diseases in children with recurrent wheezing or asthma. BMC. Pulm. Med., 14; 130.
Hosseinali. F. and Alesheikh, A. A. (2013). Assessing Urban Land-Use Expansion in Regional Scale by Developing a Multi-Agent System. Int. J. Hum., 20; 23-44.
Habermann, M., Billger, M. and Haeger-Eugensson, M. (2015). Land use regression as method to model air pollution. Previous results for Gothenburg/Sweden.  Procedia Eng., 115; 21- 28.
Jain, S. and Khare, M. (2010). Adaptive neuro-fuzzy modeling for prediction of ambient CO concentration at urban intersections and roadways. Air Qual. Atmos. Health., 3(4); 203-212.
Khalesian, M., Pahlavani, P., Delavar, MR. (2008). GIS-based multi-agent traffic micro simulation for modelling the local air pollution. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 37; 491-496.
Kanth, K. B. B. M. (2017). Agent-Based Modeling Based Artificial Intelligence Robot For Fire Extinguishing. Int. J. Eng. Res. Appl., 7; 38-42.
Kasereka, S., Kasoroa, N., Kyamakyab, K., Goufoc, E. F. D., Chokkid, A. P. and Yengoa, M. V. (2018). Agent-Based Modelling and Simulation for evacuation of people from a building in case of fire., Procedia Comput. Sci., 130; 10–17.
Li, Y., Guan, D., Tao, S., Wang, X. and He, K. (2018). A review of air pollution impact on subjective well-being: Survey versus visual psychophysics. J. Cleaner Prod., 184(20); 959-968.
Malleson, N., Heppenstall, A. and See, L. (2010). Crime reduction through simulation: An agent-based model of burglary. Comput. Environ. Urban syst., 34(3); 236–250.
Nuvolone, D., Maggiore, R. D., Maio, S., Fresco, R., Baldacci, S., Carrozzi, L., Pistelli, F. and Viegi, G. (2011). Geographical information system and environmental epidemiology: a cross-sectional spatial analysis of the effects of traffic-related air pollution on population respiratory health. Environ. Health., 10; 12.
Naughtona, O., Donnellya, A., Nolanbc, P., Pillad, P., Missteara, B. D. and Broderick, B. (2018). A land use regression model for explaining spatial variation in air pollution levels using a wind sector based approach. Sci. Total Environ., 630; 1324- 1334.
Ozcan, N. S. and Cubukcu, K. M. (2015). Evaluation of Air Pollution Effects on AsthmaDisease: The case of Izmir.  Procedia Social   Behav.  Sci., 202; 448-455.
Prez-Martinez, P. J., Miranda, R. M., Nogueira, T., Guardani, M. L., Fornaro, A., Ynoue, R. and Andrade, M. F. (2014). Emission factors of air pollutants from vehicles measured inside road tunnels in Sao Paulo: case study comparison. Int. J. Environ. Sci. Technol., 11(8); 2155-2168.
Russell, S. and Norvig, P. (2003). Artificial Intelligence A Modern Approach. (Prentice Hall Series)
Stroh, E. (2010). The use of GIS in assessing exposure to airborne pollutants. (Sweden: Lund University)
Tasdemir, U., Cindoruk, S. and Esen, F. (2005). Monitoring of criteria air pollutants in bursa, turkey. Environ. Monit. Assess., 110; 227-241.
Tao, Y., Zhong, L., Huang, X., Lu, S. E., Li, Y., Dai, L., Zhang, Y., Zhu, T. and  Huang, W. (2011). Acute mortality effects of carbon monoxide in the pearl river Delta of China. Sci. Total Environ., 410; 34-40.
Vafa-Arani, H., Jahani, S., Dashti, H., Heydari, J. and Moazen, S. (2014). A system dynamics modeling for urbon air pollution: A case study of Tehran, Iran. Transp. Res., 31; 21-36.
Viera, L., Chen, K., Nel, A. and Lloret, M. G. (2009). The Impact of Air Pollutants as an Adjuvant for Allergic Sensitization and Asthma. Curr. Allergy Asthma Rep., 9(4); 327-333.
Vahidnia, M. H., Vafaeinejad, A. R. and Shafiei, M. (2018). Heuristic game-theoretic equilibrium establishment with application to task distribution among agents in spatial networks. J. Spat. Sci.
Vafaeinejad A. R. (2017). Dynamic Guidance of an Autonomous Vehicle with Spatio-Temporal GIS. Lect. Notes Comput. Sci., 10407; 502-511.
Vafaeinezhad, A. R., Alesheikh, A. A. and Nouri, J. (2010). Developing a spatio-temporal model of risk management for earthquake life detection rescue team. Int. J. Environ. Sci. Technol., 7(2); 243-250.
Zvyagintev, A. M., Kuznetsova, N., Tarasova, O. A. and Shalygina, I. Yu. (2014). Variations in the concentrations of main air pollutants in London. Atmos. Oceanic Opt., 27(5); 417-­­427.