Review on Bioremediation: A Tool to Resurrect the Polluted Rivers

Document Type : Original Research Paper

Authors

1 Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh.

2 Department of Pharmacy, East West University, Dhaka, Bangladesh.

Abstract

The term bioremediation describes biological machinery of recycling wastes to make them harmless and useful to some extent. Bioremediation is the most proficient tool to manage the polluted environment and recover contaminated river water.  Bioremediation is very much involved in the degradation, eradication, restriction, or reclamation varied chemical and physical hazardous substances from the nearby with the action of all-inclusive microorganisms. The fundamental principle of bioremediation is disintegrating and transmuting pollutants such as hydrocarbons, oil, heavy metal, pesticides and so on. Different microbes like aerobic, anaerobic, fungi and algae are incorporated in bioremediation process. At present, several methods and approaches like bio stimulation, bio augmentation, and monitoring natural recovery are common and functional in different sites around the world for treating contaminated river water. However, all bioremediation procedures it has its own pros and cons due to its own unambiguous application. Above all, utilization of bioremediation paving a minimal inconsiderably contaminated, healthy as well as safe and sound future. 

Keywords


Andreolli, M., Lampis, S., Brignoli, P. and Vallini, G. (2015). Bioaugmentation and biostimulation as strategies for the bioremediation of a burned woodland soil contaminated by toxic hydrocarbons: A comparative study. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2015.02.007
Atlas, R. M. (1995). Petroleum biodegradation and oil spill bioremediation. Mar. Pollut. Bull. https://doi.org/10.1016/0025-326X(95)00113-2
Azevedo, L. G. T. de, Gates, T. K., Fontane, D. G., Labadie, J. W. and Porto, R. L. (2000). Integration of Water Quantity and Quality in Strategic River Basin Planning. J. Water Resour. Plan. Manag. https://doi.org/10.1061/(ASCE)0733-9496(2000)126:2(85)
Bai R, S. and Abraham, T. E. (2001). Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresour. Technol. https://doi.org/10.1016/S0960-8524(00)00107-3
Bamforth, S. M. and Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. J. Chem. Technol. Biotechnol. https://doi.org/10.1002/jctb.1276
Barbosa, M. J., Rocha, J. M. S., Tramper, J. and Wijffels, R. H. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J. Biotechnol. https://doi.org/10.1016/S0168-1656(00)00368-0
Baykara, S. Z., Figen, E. H., Kale, A. and Nejat Veziroglu, T. (2007). Hydrogen from hydrogen sulphide in Black Sea. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2006.07.021
Bezza, F. A. and Chirwa, E. M. N. (2015). Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. https://doi.org/10.1016/j.bej.2015.05.007
Boltz, J. P., Smets, B. F., Rittmann, B. E., Van Loosdrecht, M. C. M., Morgenroth, E. and Daigger, G. T. (2017). From biofilm ecology to reactors: A focused review. Water Sci. Technol. https://doi.org/10.2166/wst.2017.061
Bonn, E. W. and Follis, B. J. (1967). Effects of hydrogen sulfide on channel catfish, Ictalurus punctatus. Trans. Am. Fish. Soc. https://doi.org/10.1577/1548-8659(1967)96[31:EOHSOC]2.0.CO;2
Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresour. Technol. https://doi.org/10.1016/S0960-8524(99)00144-3
Bosso, L., Scelza, R., Testa, A., Cristinzio, G. and Rao, M. A. (2015). Depletion of Pentachlorophenol Contamination in an Agricultural Soil Treated with Byssochlamys nivea, Scopulariopsis brumptii and Urban Waste Compost: A Laboratory Microcosm Study. Water, Air, Soil Pollut. https://doi.org/10.1007/s11270-015-2436-0
Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A. O., Peralba, M. do C. R. and Bento, F. M. (2011). Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2011.09.074
Chen, X. and Stewart, P. S. (2000). Biofilm removal caused by chemical treatments. Water Res. https://doi.org/10.1016/S0043-1354(00)00187-1
Chevalier, P., Proulx, D., Lessard, P., Vincent, W. F. and De La Noüe, J. (2000). Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. https://doi.org/10.1023/A:1008168128654
Cork, D. J. and Khalil, A. (1995). Detection, Isolation, and Stability of Megaplasmid-Encoded Chloroaromatic Herbicide-Degrading Genes within Pseudomonas Species. Adv. Appl. Microbiol. https://doi.org/10.1016/S0065-2164(08)70367-8
Crawford, R. L. C. and Crawford, D. L. (2005). Bioremediation: Principles and Applications. Biotechnol. Res. https://doi.org/10.2134/jeq1999.00472425002800030042x
Das, N. and Chandran, P. (2011). Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. https://doi.org/10.4061/2011/941810
Das, S. (2014). Microbial Biodegradation and Bioremediation. Adv. Appl Biotechnol. . https://doi.org/10.1016/C2013-0-13533-7
De Oliveira, V. P., Martins, N. T., Guedes, P. D. S., Pollery, R. C. G. and Enrich-Prast, A. (2016). Bioremediation of nitrogenous compounds from oilfield wastewater by Ulva lactuca (Chlorophyta). Bioremediat. J. https://doi.org/10.1080/10889868.2015.1114463
Delpla, I., Jung, A. V., Baures, E., Clement, M. and Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. https://doi.org/10.4324/9781315818948
Dungan, R. S. and Frankenberger, W. T. (1999). Microbial transformations of Selenium and the bioremediation of seleniferous environments. Bioremediat. J. https://doi.org/10.1080/10889869991219299
Earth’s Freshwater | National Geographic Society. (n.d.). Retrieved December 1, 2018, from https://www.nationalgeographic.org/media/earths-fresh-water/
El Fantroussi, S. and Agathos, S. N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. https://doi.org/10.1016/j.mib.2005.04.011
Field, J. A., de Jong, E., Feijoo-Costa, G. and de Bont, J. A. M. (1993). Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol. https://doi.org/10.1016/0167-7799(93)90121-O
Focht, D. D. and Verstraete, W. (1977). Biochemical ecology of nitrification and denitrification. Annu. Rev. Microbiol. Ecol. https://doi.org/10.1016/j.pec.2012.01.010
Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., … He, Y. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2010.06.085
Hard, B. C. and Babel, W. (1999). Bioremediation of uranium mine drainage using methylotrophic sulfate-reducing bacteria. In BIOREMEDIATION OF NITROAROMATIC AND HALOAROMATIC COMPOUNDS.
Hard, B. C., Friedrich, S. and Babel, W. (1997). Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol. Res. https://doi.org/10.1016/S0944-5013(97)80025-0
Hashim, S., Yuebo, X. and Kabo-Bah, A. T. (2014). Beneficial bacteria helpful to restore water bodies. Orient. J. Chem. https://doi.org/10.13005/ojc/300361
Hechmi, N., Bosso, L., El-Bassi, L., Scelza, R., Testa, A., Jedidi, N. and Rao, M. A. (2016). Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.09.062
Hendrickson, E. R. (2001). Using a molecular approach to monitor a bioaugmentation pilot. Sixth Int. Situ Site Bioremediation Symp.
Herrero, M. and Stuckey, D. C. (2015). Bioaugmentation and its application in wastewater treatment: A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2014.10.033
Hlihor, R. M., Gavrilescu, M., Tavares, T., Favier, L. and Olivieri, G. (2017). Bioremediation: An Overview on Current Practices, Advances, and New Perspectives in Environmental Pollution Treatment. Biomed Res. Int. https://doi.org/10.1155/2017/6327610
Idi, A., Md Nor, M. H., Abdul Wahab, M. F. and Ibrahim, Z. (2015). Photosynthetic bacteria: an eco-friendly and cheap tool for bioremediation. Rev. Environ. Sci. Biotechnol. https://doi.org/10.1007/s11157-014-9355-1
Jacques, R. J. S., Okeke, B. C., Bento, F. M., Teixeira, A. S., Peralba, M. C. R. and Camargo, F. A. O. (2008). Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2007.04.047
Jayamani, I. (2015). Assessing the biodegradation of toluene, ethylbenzene and RDX and the identification of the microorganisms involved using stable isotope probing and high throughput amplicon sequencing. Biomed Adv. Res.
Jiang, Z. J., Fang, J. G., Mao, Y. Z. and Wang, W. (2010). Eutrophication assessment and bioremediation strategy in a marine fish cage culture area in Nansha Bay, China. J. Appl. Phycol. https://doi.org/10.1007/s10811-009-9474-1
Kang, C. H., Kwon, Y. J. and So, J. S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2016.01.023
Khan, F. A. and Ansari, A. A. (2005). Eutrophication: An Ecological Vision. Bot. Rev. https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2
Kharayat, Y. (2012). Distillery wastewater: bioremediation approaches. J. Integr. Environ. Sci. https://doi.org/10.1080/1943815X.2012.688056
Krol, W. J., Arsenault, T. L., Pylypiw, H. M. and Incorvia Mattina, M. J. (2000). Reduction of pesticide residues on produce by rinsing. J. Agric. Food Chem. https://doi.org/10.1021/jf0002894
Kuylenstierna, J., Najlis, P. and Björklund, G. (1998). Comprehensive Assessment of the Freshwater Resources of the World. Water Int. https://doi.org/EB.AIR/WG.5/2001/7
Lendvay, J. M., Löffler, F. E., Dollhopf, M., Aiello, M. R., Daniels, G., Fathepure, B. Z., … Adriaens, P. (2003). Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation. Environ. Sci. Technol. https://doi.org/10.1021/es025985u
Linton, J. (2004). Global Hydrology and the Construction of a Water Crisis. Gt. Lakes Geogr., 11(2), 1–13.
Liu, Y., Wang, Y., Sheng, H., Dong, F., Zou, R., Zhao, L., … He, B. (2014). Quantitative evaluation of lake eutrophication responses under alternative water diversion scenarios: A water quality modeling based statistical analysis approach. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.08.054
Lovley, D. R. (2001). BIOREMEDIATION: Anaerobes to the Rescue. Science (80-. ). https://doi.org/10.1126/science.1063294
Malik, A. (2004). Metal bioremediation through growing cells. Environ. Int. https://doi.org/10.1016/j.envint.2003.08.001
Mani, P., Keshavarz, T., Chandra, T. S. and Kyazze, G. (2017). Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber. Enzyme Microb. Technol. https://doi.org/10.1016/j.enzmictec.2016.10.012
Margesin, R. and Schinner, F. (2001). Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.67.7.3127-3133.2001
Margeta, K., Zabukovec Logar, N., Šiljeg, M. and Farkas, A. (2013). Water Treatment. Water Treat. https://doi.org/10.1016/B978-0-12-415923-5.00012-5
Martinez-Porchas, M., Martinez-Cordova, L. R., Lopez-Elias, J. A. and Porchas-Cornejo, M. A. (2014). Bioremediation of Aquaculture Effluents. In Microbial Biodegradation and Bioremediation. https://doi.org/10.1016/B978-0-12-800021-2.00024-8
Megharaj, M., Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. and Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. https://doi.org/10.1016/j.envint.2011.06.003
Megharaj, M., Venkateswarlu, K. and Naidu, R. (2014). Bioremediation. In Encyclopedia of Toxicology: Third Edition. https://doi.org/10.1016/B978-0-12-386454-3.01001-0
Mulligan, C. N., Yong, R. N. and Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. J. Hazard. Mater. https://doi.org/10.1016/S0304-3894(01)00226-6
Obed Ntwampe, S. K. (2014). Biodegradation of Free Cyanide Using Bacillus Sp. Consortium Dominated by Bacillus Safensis, Lichenformis and Tequilensis Strains: A Bioprocess Supported Solely with Whey. J. Bioremediation Biodegrad. https://doi.org/10.4172/2155-6199.S18-004
Ouellet-Plamondon, C., Chazarenc, F., Comeau, Y. and Brisson, J. (2006). Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2006.03.006
Pan, J., Sun, H., Nduwimana, A., Wang, Y., Zhou, G., Ying, Y. and Zhang, R. (2007). Hydroponic plate/fabric/grass system for treatment of aquacultural wastewater. Aquac. Eng. https://doi.org/10.1016/j.aquaeng.2007.09.001
Passatore, L., Rossetti, S., Juwarkar, A. A. and Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2014.05.051
Perelo, L. W. (2010). Review: In situ and bioremediation of organic pollutants in aquatic sediments. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2009.12.090
Pieper, D. H. and Reineke, W. (2000). Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. https://doi.org/10.1016/S0958-1669(00)00094-X
Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s002530100745
Qiu, R. L., Guerif, J. and Zhang, R. D. (2012). Bioremediation of Contaminated Soil and Water. Pedosphere. https://doi.org/10.1016/S1002-0160(12)60028-9
Ravikumar, S., Baylon, M. G., Park, S. J. and Choi, J. il. (2017). Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb. Cell Fact. https://doi.org/10.1186/s12934-017-0675-z
Rowan, F. E., Docherty, N. G., Coffey, J. C. and O’Connell, P. R. (2009). Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br. J. Surg. https://doi.org/10.1002/bjs.6454
Saeijs, H. L. F. and Van Berkel, M. J. (1995). Global water crisis: the major issue of the 21st century, a growing and explosive problem. Eur. Water Pollut. Control.
SHAN, M., WANG, Y. and Xue, S. (2009). Study on bioremediation of eutrophic lake. J. Environ. Sci. https://doi.org/10.1016/S1001-0742(09)60027-9
Shao, Z. Q. and Behki, R. (1996). Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl. Environ. Microbiol.
Sharma, B., Short, R. and Gardner, K. H. (2009). Potential in situ approaches for remediation of contaminated sediments. In In Situ and On-Site Bioremediation-2009: Proceedings of the 10th International In Situ and On-Site Bioremediation Symposium. https://doi.org/10.1016/j.jaridenv.2006.02.009
Shawabkeh, R., Khleifat, K. M., Al-Majali, I. and Tarawneh, K. (2007). Rate of biodegradation of phenol by Klebsiella oxytoca in minimal medium and nutrient broth conditions. Bioremediat. J. https://doi.org/10.1080/10889860601185830
Sheng, Y., Chen, F., Sheng, G. and Fu, J. (2012). Water quality remediation in a heavily polluted tidal river in Guangzhou, South China. Aquat. Ecosyst. Heal. Manag. https://doi.org/10.1080/14634988.2012.687674
Sheng, Y., Qu, Y., Ding, C., Sun, Q. and Mortimer, R. J. G. (2013). A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2013.04.004
Shrivastava, J. N., Verma, S. and Kumar, V. (2013). Bioremediation of Yamuna Water By Mono and Dual Bacterial Isolates. Indian J. Sci. Res. Technol.
Singh, A. L. and Sarma, P. N. (2010). Removal of arsenic(III) from waste water using Lactobacillus acidophilus. Bioremediat. J. https://doi.org/10.1080/10889861003767050
Singh, S. N. and Tripathi, R. D. (2007). Environmental bioremediation technologies. Environ. Technol. https://doi.org/10.1007/978-3-540-34793-4
Sivakumar, B. (2011). Water crisis: From conflict to cooperation—an overview. Hydrol. Sci. J. https://doi.org/10.1080/02626667.2011.580747
Stocking, A. J., Deeb, R. A., Flores, A. E., Stringfellow, W., Talley, J., Brownell, R. and Kavanaugh, M. C. (2000). Bioremediation of MTBE: A review from a practical perspective. Biodegradation. https://doi.org/10.1023/A:1011126414642
Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. and Naidu, R. (2013). Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. https://doi.org/10.1016/j.envint.2012.10.007
Sun, L., Liu, Y. and Jin, H. (2009). Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2008.09.016
Szabõ, C. (2007). Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd2425
Tyagi, M., da Fonseca, M. M. R. and de Carvalho, C. C. C. R. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation. https://doi.org/10.1007/s10532-010-9394-4
Van Der Gast, C. J., Whiteley, A. S. and Thompson, I. P. (2004). Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2004.00566.x
Vidali, M. (2001). Bioremediation. An overview. Pure Applyed Chem. https://doi.org/10.1351/pac200173071163
Vijayakumar, S. (2012). Potential Applications of Cyanobacteria in Industrial Effluents-A Review. J. Bioremediation Biodegrad. https://doi.org/10.4172/2155-6199.1000154
Wang, Z., Li, D., Qin, H. and Li, Y. (2012). An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes. Environ. Pollut. https://doi.org/10.1016/j.envpol.2011.09.003
Wätzlich, D., Bröcker, M. J., Uliczka, F., Ribbe, M., Virus, S., Jahn, D. and Moser, J. (2009). Chimeric Nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J. Biol. Chem. https://doi.org/10.1074/jbc.M901331200
Wu, J., Liu, J., Lin, L., Zhang, C., Li, A., Zhu, Y. and Zhang, Y. (2015). Evaluation of several flocculants for flocculating microalgae. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2015.08.094
Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., … Chen, L. (2016). Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int. Biodeterior. Biodegrad. https://doi.org/10.1016/j.ibiod.2015.11.019
Zeng, Z., Liu, J. and Savenije, H. H. G. (2013). A simple approach to assess water scarcity integrating water quantity and quality. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2013.06.012
Zheng, Y., Wang, X. C., Dzakpasu, M., Ge, Y., Zhao, Y. and Xiong, J. (2016). Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-015-5207-y
Zinicovscaia, I. and Cepoi, L. (2016). Cyanobacteria for bioremediation of wastewaters. Cyanobacteria for Bioremediation of Wastewaters. https://doi.org/10.1007/978-3-319-26751-7