Effect of Heavy Metals on the Growth of Total Phytoplankton Load

Document Type: Original Research Paper

Authors

Department of Environmental Sciences, Jahangirnagar University, Dhaka- 1342, Bangladesh

Abstract

The experiment was performed to evaluate effect of heavy metals on total phytoplankton load (TPL) using water of Turag River adjacent to Ashulia locating on the north-eastern side of Dhaka city, Bangladesh. Total phytoplankton load comprises of Euglena sp., Borodinella sp., Pediastrum biradiatum, Pinnularia sp., Fragillaria sp., Fragillaria crotonensis, Gloeocapsa sp., Navicula sp., Cynedra sp., Crucigenia sp., Chlorella sp., Spirogyra sp., Phacus acuminatus, Phacus circulatus., Nitzschia sp. and Nitzschia clausii. Phytoplankton load showed the abundances Bascillariophyceae (43.75%) > Chlorophyceae (37.50%) > Euglenophyceae (18.75%). The average maximum growth rate (log transformed) of TPL in control culture was -0.25μg/l and treated cultures using 1ppm, 3ppm, 5ppm, 7ppm concentration of heavy metals (Zn and Cu) were 0.03 μg/l, 0.03 μg/l, -0.11 μg/l and -0.26 μg/l, respectively. In treated culture using 1ppm concentration of heavy metals (Zn and Cu) the growth rate of phytoplankton load increased significantly whereas the growth rate decreased at higher concentrations (3ppm, 5ppm and 7ppm) of heavy metals. The implication of this finding can be used to monitor health of riverine ecosystems and management of river pollution.

Keywords


Ackova, D.G. (2018). Heavy metals and their general toxicity on plant. Plant Sci. Today, 5(1); 14-18.
Afkar, E., Ababna, H. and Fathi, A. A. (2010). Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Ameican J. Environ. Sci., 6(3); 230-237.
APHA (2005). Standard methods for the examination of water and wastewater (21st edition) APHA, AWWA, WEF, American public health association, Washington DC; 10-153.
Atici, T., Ahiska, S., Altindag, A. and Aydin, A. (2008). Ecological effects of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sariyar Dam Reservoir in Turkey. African J. of Biotech., 7(12); 1972-1977.
Aty, A. M. A., Ammar, N. S., Ghafar, N. S. H. H, A. and Rizka, K. A. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga anabaena spherical biomass. J. Adv. Res., 4; 367-374.
Aung, W. L., Hlaing, N. N. and Aye, K. N. (2013). Biosorption of Lead (Pb2⁺) by using Chlorella vulgaris. Int. J. Chem. Environ. & Biol. Sci., 1(2); 408-412.
Baruah, P.P. and Kakati, B. (2012). Water quality and phytoplankton diversity of Gopeswar temple fresh water pond in Assam (India). Bangladesh J. Bot., 41(2); 181-185.
Bilgrami, K. S. and Kumar, S. (1997). Effects of copper, lead and zinc on phytoplankton growth. Biologia Plantarum., 39(2); 315-317.
Dembowska, E. and Jozefowicz, S. (2015). Seasonal changes in phytoplankton and bioindices in the southern part of Lake Jeziorak (NE Poland). Oceanological and Hydrobiological Studies, 44(1); 1-10.
Pollution, 5(4): 701-707, Autumn 2019
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
707
DoE. Department of Environment (2001). The general overview of pollution status of river of Bangladesh. Government of The People’s republic of Bangladesh, Ministry of Environment and Forest, Department of Environment, Dhaka, Bangladesh.
Fathi, A. A., El-Shahed, A. M., Shoulkamy, M. A., Ibraheim, H. A. and Rahman, O. M. A. (2008). Response of Neil water phytoplankton to the toxicity Cobalt, Copper and Zinc. Res. J. Environ. Toxicol., 2; 67-76.
Ferdous, Z., Akter, S., Hasan, M., Begum, R. A. and Shahajahan, R. M. (2012). Phytoplankton diversity and abundance in relation to pollution levels in the Hazaribagh tannery effluent sewage water of the river Buriganga. Bangladesh J. Zool., 40(1); 121-128.
Fisher, N. and Jones, J. (1981). Effects of Copper and Zinc on the growth, morphology and metabolism of Asterionella japonica (Cleve). J. Exp. Mar. Biol. Ecol., 51; 37-56.
Jamers, A., Blust, R., Coen, W. D., Griffin, J. L. and Jones, O. A. H. (2013). Copper Toxicity in the microalga Chlamydomonas reinhardtii: an integrated approach. Biometals, 26; 731- 740.
Karbassi, A., Abdollahzadeh, E. M., Attaran-Fariman, G., Nazariha, M and Mazaheri-Assadi, M. (2017). Predicting the Distribution of Harmful Algal Bloom (HAB) in the Coastal Area of Oman Sea. Nature Environ. and Poll. Techno., 16(3); 753-764.
Kumar, D. S., Santhanam, P., Ananth, S., Devi, A. S., Nandakumar, R., Prasath, B. B., Jeyanthi, S., Jayalakshmi, T. and Ananthi, P. (2014). Effect of different dosages of zinc on the growth and biomass in five marine microalgae. Int. J. Fish. and Aqua., 6(1); 1-8.
Lande, V. W., Lalita, N. S. and Kankal, N. C. (2017). Effect of trace metals and nutrients on growth characteristics of three green algae Scenedesmus obliquus, Chlorella vulgaris and Sphaeocystis schroeteri. J. Glob. Biosci., 6(5); 4978-4998.
Melcakova, I. and Ruzovic, T. (2010). Biosorption of Zinc from aqueous solution using algae and plant biomass. Nova Biotechnologica, 10(1); 33-43.
Mobin, M. N., Islam, M. S., Mia, M. Y. and Bakali, B. (2014). Analysis of Physicochemical Properties of Turag River water, Tongi, Gazipur in Bangladesh. J. Environ. Sci. and Natural Resources, 7(1); 27-33.
Mohiuddin, K. M., Islam, M. S., Basak, S., Abdullah, H. M. and Ahmed, I. (2016). Status of heavy metal in sediments of the Turag river in Bangladesh. Prog. Agri., 27(2); 78-85.
Mokaddes, M. A. A., Nahar, B. S. and Baten, M. A. (2013). Status of heavy meral contamination of river water of Dhaka metropolitan city. J. environ. Sci. and N. Res., 5(2); 349-353.
Muwafq, H. M. and Bernd, M. (2006). Toxicity of heavy metals on Scendesmus quadricauda (Turp.) de brebisson in batch cultures. Environ. Sci.Pollut. Res., 13; 98-104.
Nichol’s, H. W. (1973). Growth media fresh water. In: Handbook of growth measurements. Stein, J. R. (Ed). Cambridge University Press, Cambridge; 7-24.
Osman, M. E. H., El-Naggar, A. H., El-Sheekh, M. M. and El-mazally, E. (2004). Differential effects of Co and Ni on protein metabolism in Scendesmus obliquus and Nitzschia perminuta. Environ. Toxicol. Pharmacol., 16; 169-178.
Park, J., Jin, H. F., Lim B. R., Park K. Y. and Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Biores. Techno., 101(22); 8649-8657.
Pham, T. L. (2017). Comparison between Water Quality Index (WQI) and biological indices, based on planktonic diatom for water quality assessment in the Dong Nai River, Vietnam. Pollution, 3(2); 311-323.
Prassad, D. and Prassad, A. (1987). Altered aminolaevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). J. Plant Physiol., 127; 241-249.
Regenmortel, T. V., Dimitri, V. de P., Collin, R. J. and Karel, A. C. de S. (2018). The effects of a mixture of copper, nickel and zinc on the structure and function of a freshwater plankton community. Environ. Toxicol. Chem., 37(9); 2380-2400.
Roach, J. (2004). Source of Half Earth’s Oxygen gets little credit. National Geographic News.
Rocchetta, I., Mazzuc, V. and Carmen, M. R. (2006). Effect of chromium on the fatty acid composition of two strains of Euglena gracili. Environ. Pollut., 141; 353-358.
Sari, A. and Tuzen, M. (2008). Biosorption of Pb (װ) and Cd (from aqueous solution using green alga (Ulva lactuca) biomass. J. Hazard Mater, 8; 152-302.
Tiwari, A. and Chauhan, S. V. S. (2016). Seasonal phytoplanktonic diversity of Kitham lake, Agra. J. Environ. Biol., 27; 35-38.
Wong, S. L. (1995). Algal Assay Approaches to Pollution Studies in Aquatic systems. B. C. Rana (Ed.), Pollution and Bio monitoring (pp. 26-50). Tata McGraw Hill publishing Company Limited.