A Review on Impact of E-waste on Soil Microbial Community and Ecosystem Function

Document Type: Original Research Paper

Authors

Amity Institute of Microbial Technology, Amity University, Sector 125 Noida, Uttar Pradesh, India

Abstract

The ever increasing pile-up of electronic waste in dumping sites, especially in developing countries such as China, Pakistan, India and several African countries, might have caused a significant alteration in the microbial community of the contaminated sites. This change in the microbial population may have significant impact to the soil ecology function. The major pollutants of electronic waste are heavy metals like cadmium, lead, nickel, mercury, hexavalent chromium, arsenic and persistent organic pollutants like polychlorinated biphenyls and polybrominated diphenyl ethers. In general, the toxic pollutants reduce the normal soil microbial biota but give rise to increase in the heavy metal resistant and organic pollutants remediating microbes. With the development of culture- independent approach as a tool for studying microbial diversity, the microbial community structures in toxic waste contaminated sites have been revealed gradually. Studies on the microbial community structure of electronic waste contaminated sites show that there are significant differences between the contaminated and the non-contaminated sites. Soil pH in the e-waste contaminated sites of various regions has been reported in a wide range varying from pH 4 to pH 12. However, the predominant phyla so far identified in the electronic waste contaminated sites, based on studies through culture independent approach, are Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Crenarchaeota and Bacteroidetes accounting for more than 80% of the total sequence reads on an average. The genera like Pseudomonas, Bacillus, Clostridium, Rhodococcus, Achromobacter and many unclassified bacteria are the common types in the contaminated sites.

Keywords


Abraham, W.R., Nogales, B., Golyshin, P.N., Pieper, D.H. and Timmis, K.N. (2002). Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr. Opin. Microbiol., 5(3), 246-53.
An, T., Zu, L., Li, G., Wan, S., Mai, B. and Wong, P.K. (2011). One-step process for debromination and aerobic mineralization of tetrabromobisphenol – a by a novel Ochrobactrum sp. T isolated from an e-waste recycling site. Bioresour. Technol., 102, 9148– 9154.
Awashthi, S.K. (Ed.) (2000). Prevention of Food Adulteration Act No. 37 of 1954. Central and State Rules as Amended for 1999, Ashoka Law House, New Delhi.
Awasthi, A. K., Zeng, X. and Li, J. (2016). Environmental pollution of electronic waste recycling in India: A critical review. Environ. Pollut., 211,259-270.
Balint, M., Bahram, M., Eren, A.M., Faust, K., Fuhrman, J.A., Lindahl, B., O’Hara, R.B., Opik, M, Sogin, M.L., Unterseher, M. and Tedersoo, L. (2016). Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev., 40(5), 686-700.
Bhattacharya, A. and Khare, S.K. (2016). Sustainable options for mitigation of major toxicants originating from electronic waste. Curr. Sci., 111(12), 1946-1954.
Borja, J.T., D.M., Auresenia, K. and Gallardo, S. (2005). Polychlorinated biphenyls and their biodegradation. Process Biochem., 40, 1999-2013.
Burd, G.I., Dixon, D.G. and Glick, B.R. (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol., 64(10), 3663-3668.
Canadian Council of Ministers of the Environment. (1999). Canadian soil quality guidelines for the protection of environmental and human health: Polychlorinated biphenyls. (In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg).
Cayumil, R., Khanna, R., Rajarao, R., Ikram-ul-Haq, M., Mukherjee, P.S. and Sahajwalla, V. (2016). Environmental Impact of Processing Electronic Waste – Key Issues and Challenges, E-Waste in Transition - From Pollution to Resource, Florin-Constantin Mihai, IntechOpen, DOI: 10.5772/64139.
Pollution, 5(4): 761-774, Autumn 2019
771
Chen, J., Zhou, H.C., Pan, Y., Shyla, F.S. and Tam, N.F. (2016). Effects of polybrominated diphenyl ethers and plant species on nitrification, denitrification and anammox in mangrove soils. Sci. Total Environ., 553, 60–70.
Chen, L., Zhang, W., Zhang, R., Lin, K., He, L. and Wu, L. (2015). The bioavailability and adverse impacts of lead and decabromodiphenyl ether on soil microbial activities. Environ. Sci. Pollution Res., 22(16), 12141-12149.
Chibuike, G.U. and Obiora, S.C. (2014) Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. doi:10.1155/2014/752708
Colombo, F., Macdonald, C.A., Jeffries, T.C., Powell, J.R. and Singh, B.K. (2016). Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biol. Biochem., 94, 200-210.
Crowley, D. (2008) Impacts of Metals and Metalloids on Soil Microbial Diversity and Ecosystem Function. Revista de la ciencia del suelo y nutrición vegetal., 8, 6-11. Dai, J., Becquer, T., Rouiller, J.H., Reversat, G., Bernhard-Reversat, F., Nahmani, J. and Lavelle, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA extractable metals in soil. Soil Biol. Biochem., 36(1), 91-98. Deng, D., Hu, M., Li, L. and Huang, Y. (2018). Denitrifying microbial communities in heavy-metal-contaminated paddy soils near electronic-waste processing centers. Water Air Soil Pollut., 229: 318. European Union (2002). Heavy metals in Wastes, European Commission on Environment. http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf Ewers, U. (1991). Standards, guidelines and legislative regulations concerning metals and their compounds. (In: E. Maria (Ed.), Metal and their compounds in the environment: Occurrence, Analysis and Biological Relevance. (pp. 458-468), VCH, Weinheim, New York: USA.) Furukawa, K. (2000). Engineering dioxygenases for efficient degradation of environmental pollutants. Curr. Opin. Biotechnol., 11, 244-249.
Gadd (2003). Toxic metal contamination treatment with microbes. (In V. Sasek, J.A. Glaser, P. Baveye (Eds.), The utilization of bioremediation to reduce soil contamination: Problems and solutions (pp. 75-94). Springer: Netherlands.)
Gentry, T.J., Wickham, G.S., Schadt, C.W., He, Z. and Zhou, J. (2006). Microarray applications in microbial ecology research. Microb. Ecol., 52(2), 159-175.
Ghorbani, N.R., Salehrastin, N. and Moeini, A. (2002). Heavy metals affect the microbial populations and their activities. Proceedings of the 17th World Congress Soil Science 2234, 1–11.
Giller, K.E., Witter, E. and McGrath, S. (1998). Toxicity of heavy metals to microorganism and microbial processes in agricultural soil. A review. Soil Biol. Biochem., 30(10/11), 1389-1414.
Grant, K., Goldizen, F.C., Sly, P.D., Brune, M.N., Neira, M., van den Berg, M. and Norman, R.E. (2013). Health consequences of exposure to e-waste: a systematic review. Lancet Glob. Health., 1(6), 350-360.
Huang, H.L., Zhang, S.Z. and Christie, P. (2011). Plant uptake and dissipation of PBDEs in the soils of electronic waste recycling sites. Environ. Pollut., 159(1), 238-243.
Isildar, A., van de Vossenberg, J., Rene, E.R., van Hullebusch, E.D. and Lens, P.N. (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag., 57,149-157.
Jiang, B., Adebayo, A., Jia, J., Xing,Y., Deng, S. and Guo, L., Liang, Y. and Zhang, D. (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J. Hazard. Mater., 362,187-195.
Jiang, L., Cheng, Z., Zhang, D., Song, M., Wang, Y., Luo, C., Yin, H., Li, J. and Zhang, G. (2017). The influence of e-waste recycling on the molecular ecological network of soil microbial communities in Pakistan and China. Environ. Pollut., 231, 173-181.
Kenarova, A. and Boteva, S. (2015). Functional diversity of microorganisms in heavy metal polluted soils. (In I. Sherameti, A. Varma (Eds.), Heavy metal contamination of soils monitoring and remediation (Soil Biology) Vol 44, pp. 245-257. Switzerland: Springer).
Kiddee, P., Naidu, R. and Wong, M.H. (2013). Metals and polybrominated diphenyl ethers leaching from electronic waste in simulated landfills. J. Hazard. Mater., 252–253.
Kirk, J.L., Beaudettea, L.A., Hartb, M., Moutoqlis, P., Klironomos, J.N., Lee, H. and Trevors, J.T. (2004). Review Methods of studying soil microbial diversity. J. Microbiol. Methods, 58, 169 – 188.
Konopka, A., Zakharova, T., Bischoff, M., Oliver, L., Nakatsu, C. and Turco, R.F. (1999). Microbial biomass and activity in lead-contaminated soil. Appl. Environ. Microbiol., 65(5), 2256-2259.
Salam, M.D. and Varma, A.
772
Kumar, A., Saini, H.S. and Kumar, S. (2017). Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility. Curr. Microbiol., 75(2), 194-201.
Lenart-Boron, A. and Boron, P. (2014). The Effect of Industrial Heavy Metal Pollution on microbial abundance and diversity in soils – A review. (In M.C. Hernandez-Soriano (Eds.), Environmental Risk Assessment of Soil Contamination (pp.759-784) Croatia: InTech Open Science).
Liu, J., Chen, X., Shu, H., Lin, X., Zhou, Q., Bramryd, T., Shu, W.S. and Huang, L. (2018) Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environ. Pollut., 235, 171-179.
Liu, J., He, X.X., Lin, X.R., Chen, W.C., Zhou, Q.X., Shu, W.S. and Huang, L.N. (2015). Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ. Sci. Technol., 49(11), 6438-6447.
Liu, L., Zhu, W., Xiao, L. and Yang, L. (2010). Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition. J. Hazard Mater., 186(1), 883-890.
Manoharan, L., Kushwaha, S.K., Hedlund, K. and Ahren, D. (2015). Captured metagenomics: large-scale targeting of genes based on 'sequence capture' reveals functional diversity in soils. DNA Res., 22(6), 451-60.
McLaughlin, M. (2006). Heavy metals. (In R. Lal (Ed.), Encyclopedia of Soil Science Vol I, (pp. 817-821). Boca Raton: CRC Press). Morgan, H., Burca, R. D., Martin, I. and Jrffries, J. (2009). Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol BS32 4UD. Environment Agency.
Needhidasan, S., Samuel, M. and Chidambaram, R. (2014). Electronic waste – an emerging threat to the environment of urban India. J. Environ. Health Sci. Eng., 12, 36.
Panwar, R. M. and Ahmed, S. (2018). Assessment of contamination of soil and groundwater due to e-waste handling. Curr. Sci., 114(1), 166-173.
Patel, S. and Kasture, A. (2014). Electronic Waste Management using Biological systems-overview. Int. J. Curr. Microbiol. Appl. Sci., 3(7), 495-504.
Perkins, D.N., Brune Drisse, M.N., Nxele, T. and Sly, P.D. (2014). E-Waste: A Global Hazard. Ann. Glob. Health., 80(4), 286-295.
Pieper, D.H. (2005). Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol., 67, 170-191.
Pinto, V.N. (2008). E-waste Hazard: The impending challenge. Indian J. Occup. Environ. Med., 12(2), 65–70.
Qiu, M., Chen, X., Deng, D., Guo, J., Sun, G., Mai, B. and Xu, M. (2015). Effects of electron donors on anaerobic microbial debromination of polybrominated diphenyl ethers (PBDEs). Biodegradation, 23(3), 351-361.
Quideau, S.A., McIntosh, A.C., Norris, C.E., Lloret, E., Swallow, M.J. and Hannam, K. (2016). Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils. J. Vis. Exp. (114), e54360, 1-9.
Rajapaksha, R.M.C.P., Tobor-Kaplon, M.A. and Baath, E. (2004). Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently. Appl. Environ. Microbiol., 70(5), 2966–2973.
Roesch, L.F., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K., Kent, A.D., Daroub, S.H., Camargo, F.A., Farmerie, W.G. and Triplett, E.W. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 1(4), 283–290.
Saritha, V., Sunil Kumar, K. A. and Srikanth, V. N. (2015). Consumer attitudes and perceptions on electronic waste: An assessment. Pollution, 1(1), 31-43.
Segev, O., Kushmaro, A. and Brener, A. (2009). Environmental Impact of Flame Retardants (Persistence and Biodegradability). Int. J. Environ. Res. Public Health, 6, 478-491.
Singh, P., Borthakur, A., Singh, R., Awasthi, S., Pal, D.B., Srivastava, P., Tiwary, D. and Mishra, P.K. (2017). Utilization of temple floral waste for extraction of valuable products: A close loop approach towards environmental sustainability and waste management. Pollution, 3(1), 39-45.
Sobolev, D. and Begonia, M.F. (2008). Effects of Heavy Metal Contamination upon Soil Microbes: Lead-induced Changes in General and Denitrifying Microbial Communities as Evidenced by Molecular Markers. Int. J. Environ. Res. Public Health, 5(5), 450-456.
Song, M., Cheng, Z., Luo, C., Jiang, L., Zhang, D., Yin, H. and Zhang, G. (2018). Rhizospheric effects on the microbial community of e-waste-contaminated soils using phospholipid fatty acid and isoprenoid glycerol dialkyl glycerol tetraether analyses. Environ. Sci. Pollut. Res., 25 (10), 9904–9914.
Pollution, 5(4): 761-774, Autumn 2019
773
Su, X., Shen, H., Yao, X., Ding, L., Yu, C. and Shen, C. (2013). A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresour. Technol., 146, 27–34.
Su, X.M., Liu, Y.D., Hashmi, M.Z., Ding, L.X. and Shen, C.F. (2015). Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus. Microb. Biotechnol., 8(3), 569–578.
Suenaga, H. (2012). Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol., 14(1), 13-22.
Taiwo, M.O., Onatunde, O.O., Bamisile, O., Nwachukwu, B. C. and Sakariyau A.O. (2018). Assessment of Soil Microorganisms, Heavy Metal Levels and Natural Radionuclei Concentrations of Three Electronic Waste Dumpsites in Nigeria. International Journal of Microbiological Research 9 (3): 81-88.
Tan, S.I., Ng, I.S., and Yu, Y.J. (2017). Heterologous expression of an acidophilic multicopper oxidase in Escherichia coli and its applications in biorecovery of gold. Bioresour. Bioprocess., 4(1), 1-10.
Tang, X., Qiao, J., Chen, C., Chen, L., Yu, C., Shen, C. and Chen, Y (2013). Bacterial communities of polychlorinated biphenyls polluted soil around an e-waste recycling workshop. Soil and Sediment Contam., 22, 562–573. Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. doi:10.1155/2011/939161.
Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. EXS. 101, 133–164.
Teng, Y., Wang, X., Li, L., Li, Z. and Luo, Y. (2015). Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci., 6(32), 1-11.
Tillmann, S., Stro¨mpl, C., Timmis, K.N. and Abraham, W.R. (2005). Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol. Ecol., 52, 207–217.
Tu, Q., Yu, H., He, Z., Deng, Y., Wu, L., Van Nostrand, J.D., Zhou, A., Voordeckers, J., Lee, Y.J., Qin, Y., Hemme, C.L., Shi, Z., Xue, K., Yuan, T. and Wang, A., Zhou. (2014). GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol. Ecol. Resour., 14(5), 914-928.
Wang, F., Yao, J., Si, Y., Chen, H., Russel, M., Chen, K., Qian, Y., Zaray, G. and Bramanti, E. (2010). Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater., 173(1-3), 510-516.
Weber, K.P. and Legge, R.L. (2010). Community-level physiological profiling. Methods Mol. Biol., 599, 263-81.
Wong, C.S., Duzgoren-Aydin, N.S., Aydin, A., Wong, M.H. (2007) Evidence of excessive releases of metals from primitive e-waste processing in Guiyu, China. Environ. Pollut., 148(1), 62-72.
Wu, P., Wang, Y.S., Sun, C.C., Sun, F.L. and Wang, Y.T. (2013). Microbial community shift with decabromodiphenyl ether (BDE 209) in sediments of the Pearl River estuary, China. Biologia, 68(5), 788-796.
Wu, W., Liu, X., Zhang, X., Zhu, M. and Tan, W. (2018). Bioleaching of copper from waste printed circuit boards by bacteria-free cultural supernatant of iron–sulfur-oxidizing bacteria. Bioresour. Bioprocess., 5:10 doi:10.1186/s40643-018-0196-6
Xia, X. (2013) Microbial degradation of polybrominated diphenyl ethers: Current and future science. J. Bioremediat. Biodegrad., 4(1), 1-2.
Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L. and Fu, J. (2016). Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation. Front. Plant Sci., 7 (755), doi:10.3389/fpls.2016.00755
Xu, M., Zhang, Q., Xia, C., Zhong, Y., Sun, G., Guo, J., Yuan, T., Zhou, J., He, Z. (2014). Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. The ISME Journal, 8(9), 1932–1944.
Yang, Y., Xu, M., He, Z., Guo, J., Sun, G. and Zhou, J. (2013). Microbial Electricity Generation Enhances Decabromodiphenyl Ether (BDE-209) Degradation. PLoS One, doi: 10.1371/journal.pone.0070686
Ye, M., Sun, M., Wan, J., Fang, G., Li, H., Hu, F., Jiang, X. and Kengara, F.O. (2015). Enhanced soil washing process for the remediation of PBDEs/Pb/Cd-contaminated electronic waste site with carboxymethyl chitosan in a sunflower oil-water solvent system and microbial augmentation. Environ. Sci. Pollut. Res. Int., 22(4), 2687-98.
Yin, H., Niu, J., Ren, Y., Cong, J., Zhang, X., Fan,
Salam, M.D. and Varma, A.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
774
F., Xiao, Y., Zhang, X., Deng, J., Xie, M., He, Z., Zhou, J., Liang, Y. and Liu, X. (2015). An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep., doi: 10.1038/srep14266.
Zhang, W., Wang, H., Zhang, R., Yu, X.Z., Qian, P.Y. and Wong, M.H. (2010). Bacterial communities in PAH contaminated soils at an electronic-waste processing center in China. Ecotoxicology, 19, 96–104.
Zhang, W., Zhang, M., An, S., Lin, K., Li, H., Cui, C., Fu, R. and Zhu, J. (2012). The combined effect of decabromodiphenyl ether (BDE-209) and copper (Cu) on soil enzyme activities and microbial community structure. Environ. Toxicol. Pharmacol., 34(2), 358-69.
Zhang, X., Li, F., Liu, T., Peng, C., Duan, D., Xu, C., Zhu, S. and Shi, J. (2013). The Influence of Polychlorinated Biphenyls Contamination on Soil Protein Expression. ISRN Soil Science, doi:10.1155/2013/126391
Zhao, H., Dai, S., Sun, W., Wang, G., Guo, Y., Guo, J., Xu, M., Wu, H. and Li, X. (2011). Comparison of bacterial diversity of polluted and unpolluted sediment by brominated flame retardant. Wei Sheng Wu Xue Bao, 51(3), 377-85.