The Use of Raw and Thermally-Modified Calcareous Sludge Generated in Stone Cutting Industry for Sulfur Dioxide Removal

Document Type : Original Research Paper


Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran


Management of solid wastes is considered as an economic and environmental issue in the building stone industry. The current study uses raw and calcined calcareous sludge, generated in the stone cutting factories, in order to remove sulfur dioxide. Sludge characterization has been performed, using X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analyses. The removal experiments of sulfur dioxide have conducted under different humid contents and adsorbent doses. The results showed that the higher the adsorbent dosage and humidity content, the greater the SO2 adsorption.. The calcination process at temperatures of 400, 500, 600, and 700℃ revealed that with rising calcination temperature and humidity content, the adsorbent capability is enhanced considerably. This method could be developed for the management of stone sludge produced from the stone cutting industry through its conversion into an effective and low-cost adsorbent for desulfurization process.


Yang, H. Xu, Z. Fan, M. Gupta, R. Slimane, R.B. Bland, A.E. and Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. J. Environ. Sci., 20(1); 14-27.
Chakrabarti, P.D. (2001). Urban crisis in India: New initiatives for sustainable cities. Devel. Prac., 11(2-3); 260-272.
Nath, B. and Stefanov Cholakov, G. (2009). Pollution control technologies EOLSS Publications. The United Kingdom; 124-153.
Córdoba, P. (2015). Status of flue gas desulfurization (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel., 144(274-286.
Rayaprolu, K. (2017). Boilers: A practical reference (1 ed). CRC Press 159-160.
Suárez-Ruiz, I. and Crelling, J.C. (2008). Applied coal petrology: The role of petrology in coal utilization Academic Press. 111-127.
Miao, M. Feng, X. Wang, G. Cao, S. Shi, W. and Shi, L. (2015). Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis. Particulogy., 19(53-59.
Xie, W. Chang, L. Wang, D. Xie, K. Wall, T. and Yu, J. (2010). Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash. Fuel., 89(4); 868-873.
Lees, D. and Payne, J. (2001). Chemistry for ocr a for separate award Pearson Education. 22-32.
Gopi, S. (2009). Basic civil engineering Pearson Education India. 9-11.
Lorpari Zanganeh, A. and Roosta, A. (2012). Analytical study of Iran export and manufacturing of decorative stones in the year 2012 (2012 – 2013) and Iran’s position in the global decorative stone industry. Int. J. Sc. Manag. Devel. 3(1); 793-798. ISSN:2345-3974.
Lakhani, R. Kumar, R. and Tomar, P. (2014). Utilization of stone waste in the development of value-added products: A state of the art review. J. Eng. Sci. Tech. Rev., 7(3); 180-187.
Almeida, N. Branco, F. and Santos, J.R. (2007). Recycling of stone slurry in industrial activities: Application to concrete mixtures. J. Build. Env., 42(2);810-819.
Al-Joulani, N. (2007). Engineering properties, industrial and structural applications of stone slurry waste. J. J. App. Sci., 9(1); 13-23.
Al-Joulani, N. (2014). Utilization of stone slurry powder in the production of artificial stones. Re. J. Eng. App. Sci., 3(4); 245-249.
Alzboon, K. K. and Mahasneh, K. N. (2009). Effect of using stone cutting waste on the compression strength and slump characteristics of concrete. Int. J. Env. Sci. Eng, 1(4); 167-172.
Barani, K. and Esmaili, H. (2016). Production of artificial stone slabs using waste granite and marble stone sludge samples. J. Min. Env., 7(1); 135-141.
Pappu, A. Saxena, M. and Asolekar, S.R. (2007). Solid wastes generation in India and their recycling potential in building materials. Build. Environ., 42(6); 2311-2320.
Altun, N. E. (2014). Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control. Fuel Process. Technol., 128(461-470).
Maina, P. and Mbarawa, M. (2012). Blending lime and iron waste to improve sorbents reactivity towards desulfurization. Fuel., 102(162-172).
Ogenga, D. Mbarawa, M. Lee, K. Mohamed, A. and Dahlan, I. (2010). Sulfur dioxide removal using south African limestone/siliceous materials. Fuel., 89(9); 2549-2555.
Siagi, Z. Mbarawa, M. Mohamed, A. Lee, K. and Dahlan, I. (2007). The effects of limestone type on the sulfur capture of slaked lime. Fuel., 86(17-18); 2660-2666.
Saravanan, R. and Rani, M.P. (2011). Metal and alloy bonding-an experimental analysis: Charge density in metals and alloys. Springer Science & Business Media. 32-40.
Loghmani, F., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Sahoo, S. Chakraborti, C. K. Mishra, S. C. and Nanda, U. N. (2011). Scanning electron microscopy as an analytical tool for particle size distribution and aspect ratio analysis of ciprofloxacin mucoadhesive polymeric suspension. Academic Research Publishing Agency., 6(6); 1-11.
Gladysz, G. M. and Chawla, K. K. (2014). Voids in materials: From unavoidable defects to designed cellular materials. Elsevier., 169-170.
Lin, R. B. Shih, S. M. and Liu, C. F. (2003). Characteristics and reactivities of ca (oh) 2/silica fume sorbents for low-temperature flue gas desulfurization. Chem. Eng. Sci., 58(16); 3659-3668.
Stanmore, B. and Gilot, P. (2005). Calcination and carbonation of limestone during thermal cycling for CO2 sequestration. Fuel Process. Technol., 86(16); 1707-1743.
Ismail, H. Shamsudin, R. Hamid, M. A. A. and Awang, R. (2016). Characteristics of β-wollastonite derived from rice straw ash and limestone. J. Aust. Ceram. Soc., 52(2); 163-174.
Souza, F. D. and Braganca, S. R. (2017). Evaluation of limestone impurities in the desulfurization process of coal combustion gas. Braz. J. Chem. Eng., 34(1); 263-272.
Sarjeant, C. (2014). Contextualizing the Neolithic occupation of southern Vietnam (terra australis 42) ANU Press. Canberra, 482 p.
Atwood, J.L. and Steed, J.W. (2004). Encyclopedia of supramolecular chemistry CRC Press. 950-995.
Zhang, Y. Shao, D. Yan, J. Jia, X. Li, Y. Yu, P. and Zhang, T. (2016). The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi formations, Sichuan basin, China. J. Natu. Gas. Geosci., 1(3); 213-220.
Aligizaki, K. K. (2014). Pore structure of cement-based materials: Testing, interpretation, and requirements CRC Press. 60-108.
Gökçekus, H. Türker, U. and LaMoreaux, J. W. (2011). Survival and sustainability: Environmental concerns in the 21st century Springer Science & Business Media. 903-904.
Lichtfouse, E. Schwarzbauer, J. and Robert, D. (2011). Environmental chemistry for a sustainable world: Volume 2: Remediation of air and water pollution Springer Science & Business Media.
Regupathi, I. Shetty, V. and Thanabalan, M. (2016). Recent advances in chemical engineering Springer. 158-162.
Lewinsky, A.A. (2007). Hazardous materials and wastewater: Treatment, removal and analysis Nova Publishers. 201-224.
Sirisha, D. Mukkanti, K. and Gandhi, N. (2012). Adsorption studies on alum sludge. Adv. Appl. Sci. Re, 3(5); 3362-3366.
Priyanka, V. M. Sirisha, D. and Gandhi, N. (2012). Sulfur dioxide adsorption using macrotyloma uniflorum lam. Seed powder. Proceedings of the International Academy of Ecology and Environmental Sciences., 2(4); 251-254.
Agnew, J. Hampartsoumian, E. Jones, J. and Nimmo, W. (2005). The effect of sintering on sulfur capture by limestone and dolomite. J. Energy. Inst., 78(2); 81-89.
Fenouil, L. A. and Lynn, S. (1995). Study of calcium-based sorbents for high-temperature h2s removal. 1. Kinetics of h2s sorption by uncalcined limestone. Ind. Eng. Chem. Res., 34(7); 2324-2333.
Válek, J. Van Halem, E. Viani, A. Pérez-Estébanez, M. Ševčík, R. and Šašek, P. (2014). Determination of optimal burning temperature ranges for production of natural hydraulic limes. Constr. Build. Mater., 66; 771-780.
Borgwardt, R. H. (1989). Calcium oxide sintering in atmospheres containing water and carbon dioxide. Ind. Eng. Chem. Res., 28(4); 493-500.
Souza, A. Pinheiro, B. and Holanda, J. (2010). Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Environ. Manage., 91(3); 685-689.
Fan, H. Xie, K. Shangguan, J. Shen, F. and Li, C. (2007). Effect of calcium oxide additive on the performance of iron oxide sorbent for high-temperature coal gas desulfurization. J. Nat. Gas. Chem., 16(4); 404-408.
Davini, P. (2000). The investigation into the desulphurization properties of by-products of the manufacture of white marbles of northern tuscany. Fuel., 79(11); 1363-1369.
Siagi, Z. Mbarawa, M. Mohamed, A. Lee, K. and Dahlan, I., 2006. Removal of sulfur dioxide by calcium-based materials from different sources in south Africa, the 8th Asia-Pacific international symposium on combustion and energy utilization, Sochi (Russian Federation), pp. 10-12.
Liu, C. F. Shih, S. M. and Lin, R. B. (2002). Kinetics of the reaction of ca (oh) 2/fly ash sorbent with SO2 at low temperatures. Chem. Eng. Sci., 57(1); 93-104.