Lake Hydro Geochemistry: An Implication to Chemical Weathering, Ion-exchange Phenomena and Metal Interaction

Document Type : Original Research Paper


1 Department of Environmental Science, The University of Burdwan, Burdwan, India

2 Department of Statistics, The University of Burdwan, Burdwan, India


Present study aims to unravel the hydro geochemical interaction of sediment and water of Saheb bandh lake, West Bengal, India with an emphasis on heavy metal assessment. Lake water belongs to Ca2+–HCO3− type hydro geochemical faces and water-rock interaction primarily controls the lake water chemistry. Based on different Hydro chemical characteristics it is suggested that silicate weathering is the major hydro geochemical process operating in Saheb bandh lake water. Regarding point source contribution of pollutants the average value of NO3-N, TP and Hg are much higher in inlet water (7.5 mg/L, 1.29 mg/L and 8.5 μg/L) than the lake water (1.5 mg/L, 0.05 mg/L and 0.42 μg/L). Risk assessment indices suggest advanced decline of the sediment quality. Water-sediment interaction of heavy metals reveals that Cd, As, Pb and Hg metals enter into lake water as a result of not only natural processes but also of direct and indirect activities of humans. This study recommends that continuous monitoring of these metals in water and sediment and other aquatic biota of Saheb bandh should be directed to assess the risk of these vital heavy metals in order to maintain the safe ecology in the vicinity of this lake.


Abida, B., Harikrishna, S., Irfanulla, K., Ramaiah, M., Veena, K. and Vinutha, K. (2008). Analysis of flouride level in water and fish species of Sankey, Bellandur and Madivala lakes of Bangalore. Rasayan J. chem., 1(3), 596–601.
Afkhami, F., Karbassi, A. R., Nasrabadi, T. and Vosoogh, A. (2013). Impact of oil excavation activities on soil metallic pollution, case study of an Iran southern oil field. Environ. Earth Sci., 70(3), 1219–1224.
Ajayan, A. and Kumar, A. (2016). On the seasonal changes in the surface water chemistry of Museum Lake, Thiruvananthapuram, Kerala, India. Pollution, 2(2), 103–114.
APHA (1998). Standard Methods for the Examination of Water and Wastewater, 20th Edn, American Public Health Association, Washington, DC:APHA, AWWA, WEF.
Backman, B., Bodis, D., Lahermo, P., Rapant, S. and Tarvainen, T. (1997). Application of a groundwater contamination index in Finland and Slovakia. Environ. Geol., 36, 55–64.
Bertling, S., Wallinder, I. O., Leygraf, Ch. and Kleja, D. B. (2006). Occurrence and fate of corrosion-induced zinc in runoff water from external structures. Sci. Total. Environ., 367, 908–923.
Bhuiyan, M. A. H., Islam, M. A., Dampare, S. B., Parvez, L. and Suzuki, S. (2010). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of Northwestern Bangladesh. J. Hazard. Mater., 179, 1065–1077.
Black, C. A. (1965). Methods of Soil Analysis Part I. American Society Agronomy Incorporation Publication, Madison Wisconsin, USA.
Bray, R. H. and Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci., 59, 39–45.
Chapman, D. V. (1996). Water Quality Assessments: A Guide to the Use of Biota, Sediments, And Water In Environmental Monitoring 2nd edn, London: E & F N Spon.
Chi, Q. Q., Zhu, G. W. and Langdon, A. (2007). Bioaccumulation of heavy metals in fishes from Taihu lake. China. J. Environ. Sci., 19, 1500–1504.
Das Sharma, S. (2019). Risk assessment and mitigation measures on the heavy metal polluted water and sediment of the Kolleru Lake in Andhra Pradesh, India. Pollution, 5(1), 161–178.
Dutta, S., Mazumdar, T., Saha, T. and Mukhopadhyay, A. (2014). A bioassay approach to determine the bioindicator potential of Ceriodaphniadubia for heavy metal pollution. Int. J. Environ. Biol., 4(1), 41–46.
Edet, A. E. and Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from akpabuyo–odukpani area, lower cross river basin (southeastern Nigeria). GeoJournal, 57, 295–304.
Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Sci. J., 170, 795–840. Guo, W., Liu, X., Liu, Z. and Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia. Environ. Sci., 2, 729–736.
Hakanson, L. (1980). An ecological risk assessment index for aquatic contamination control, a sedimentogical approach. Water Res., 14(8), 975–1001.
Kabata-Pendias, A. (2000) Biogeochemistry of Cadmium. Committee ‘‘Man and the environment’’ under the Presidium of the Polish Academy of Science, 26, 17–24.
Kabata-Pendias, A. and Pendias, H. (2000). Trace elements in soils and plants. CRC Press LLC. Boca Raton, London, New York, Washington, D.C.
Karbassi, A. R. and Amirnezhad, R. (2004). Geochemistry of heavy metals and sedimentation rate in a bay adjacent to the Caspian Sea. Int. J. Environ. Sci. Technol., 1(3), 191–198.
Karbassi, A., Nasrabadi, T., Rezai, M. and Modabberi, S. (2014). Pollution with metals (As, Sb, Hg, Zn) in agricultural soil located close to Zarshuran gold mine, Iran. Environ. Eng. Manag. J., 13(1), 115–122.
Karbassi, S., Nasrabadi, T. and Shahriari, T. (2016). Metallic pollution of soil in the vicinity of National Iranian Lead and Zinc (NILZ) Company. Environ. Earth Sci., 75(22), 1433.
Karnataka State Pollution Control Board. (2002). Water quality monitoring of lakes in and around Bangalore city, Bangalore. 2, 1–8.
Kouadio, I. and Trefry, J. H. (1987). Sediment trace metal concentration in the Ivory coast, West Africa. Water Air Soil Pollut., 32,145–154.
Dutta, G., et al.
Lokhande, R. S., Singare, P. U., Andhele, M. L. and Acharya, R. (2010a). Availability of essential trace elements in Ayurvedic Indian medicinal herbs using instrumental neutron activation analysis and atomic absorption spectroscopy. World J. Sci. Technol. Sustain. Dev., 7(2), 175–190.
Lokhande, R. S., Singare, P. U., Andhele, M. L. and Acharya, R. (2010c). Study of some Indian medicinal plants by application of INAA and AAS techniques. Nat. Sci., 2(1), 26–32.
Lokhande, R. S., Singare, P. U., Andhele, M. L. and Acharya, R. (2009a). Application of INAA and AAS techniques for analysis of essential trace elements in some Indian medicinal plants. Int. J. Behavioural and Healthcare Res., 1(4), 388–399.
Lokhande, R. S., Singare, P. U., Andhele, M. L., Acharya, R., Nair, A. G. C. and Reddy, A. V .R. (2010b). Determination of macro, micro nutrient and trace element concentrations in Indian medicinal plants using instrumental neutron activation analysis and atomic absorption spectroscopy techniques. Int. J. Food Saf., Nutr. Publ. Health, 3(1), 33–44.
Lokhande, R. S., Singare, P. U., Andhele, M. L., Acharya, R., Nair, A. G. C. and Reddy, A. V. R. (2009b). Analysis of mineral content of some medicinal plants by NAA and AAS techniques. Radiochemistry, 51(3), 321–325.
Long, E. R. and MacDonald, D. D. (1998). Recommended uses of empirically derived sediment quality guidelines for marine and estuarine ecosystems. Hum. Ecol. Risk. Assess., 4, 1019–1039.
Luck, J. D., Workman, S. R., Coyn,e M. S. and Higgins, S. F. (2008). Solid material retention and nutrient reduction properties of pervious concrete mixtures. Biosyst. Eng., 100, 401–408.
MacDonald, D. D., Ingersoll, C. G. and Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol., 39, 20–31.
MED (2008). Municipal Engineering Directorate, Department of Municipal Affairs, Govt. of West Bengal, Report.
Moore, M. R., Imray, P., Dameron, Ch., Callan, P., Langley, A. & Mangas, S. (1996). Copper, Report of an International Meeting 20 – 21 June 1996 Brisbane, Metal Series, No. 3., National Environmental Health Forum.
Muller, G. (1981). Die schwermetallbelstung der sedimente des neckars und seiner nebenflusse: eine estandsaufnahme. Chemiker Zeitung, 105, 157–164.
Piper, A. M. (1953). A graphic procedure in the geochemical interpretation of water analysis, Washington D.C., United States Geological Survey.
Rickard, D. T. and Nriagu, J. O. (1978). Aqueous environmental chemistry of lead. In the biogeochemistry of lead in the environment (Edited by Nriagu J. O.), Part A. pp. 219-284. Elsevier/North-Holland Biomedical Press, Amsterdam.
Rogival, D., Scheirs, J., and Blust, R. (2007). Transfer and accumulation of metals in a soil–diet–wood mouse food chain along a metal pollution gradient. Environ. Pollut., 145, 516–528.
Rzetala, M. A. (2016). Cadmium contamination of sediments in the water reservoirs in Silesian upland (southern Poland). J. Soils Sediments, 16, 2458–2470.
Salomons, W. and Baccini, P. (1986). Chemical Species and Metal Transport in Lakes. In: Bernhard, M., Brinckman, F. E. and Sadler, P. J. (eds.), The Importance of Chemical ‘‘Speciation’’ in Environmental Processes. Springer Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.
Shen, J., Liu, E. F., Zhu, Y. X., Hu, S. Y., and Qu, W. C. (2007). Distribution and chemical fractionation of heavy metals in recent sediments from Lake Taihu, China. Hydrobiologia, 581, 141–150.
Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals, Verlag, Berlin.
Sinex, S. A. and Helz, G. R. (1981). Regional geochemistry of trace elements in chesapeake bay sediments. Environ. Geol., 3, 315–323.
Singare, P. U., Lokhande, R. S. and Naik ,K. U. (2010). A case study of some lakes located at and around Thane City of Maharashtra, India, with special reference to physico-chemical properties and heavy metal content of lake water. Interdiscip. Environ. Rev., 11(1), 90 – 107.
Stallard, R. F. and Edmond, J. M. (1983). Geochemistry of the Amazon 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res., 88, 9671–9688. Subbiah, B. V. and Asija, G. L. (1956). A rapid procedure for the determination of available nitrogen in soil. Curr. Sci., 25, 259–260.
Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39, 611–627.
Taghinia Hejabi, A., Basavarajappa, H. T., and Qaid Saeed, A. M. (2010). Heavy metal pollution in Kabini River sediments. Int. J. Environ. Res., 4(4), 629–636.
Pollution, 5(4): 803-819, Autumn 2019
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Taylor, S. R. (1964). Abundances of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta, 28(8), 1273–1285.
Thorat, S. R. and Sultana M. (2000). Pollution status of Slim Alilake. Aurangabad (M.S). Pollut. Res., 19, 307–309.
Tomlinson, D. C., Wilson, J. G., Harris, C. R. and Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Mar. Res., 33, 566–575.
Turekian, K. K. and Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am., 72, 175–192.
Tyagi, P. (2008). Ecosystem Health: Approach to Restoration of Wetland. PhD Thesis, Bundelkhand University, Jhansi, India.
Verma, S. R. and Shukla. (1970). The physico-chemical condition of Kamaia Nehru Tank Muzaffarnagar (UP), relation to the biological productivity. Environ. Health, 12(2), 110–112.
Walkley, A. and Black, I. A. (1934). An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29–37.
WHO (2006). Guidelines for drinking-water quality, 3rd Edn, World Health Organization (WHO), Geneva.
Xie, Y. F., Chen, T. B., Lei, M., Yang, J., Guo, Q. J., Song, B., et al. (2010). Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere. doi:10.1016/j.chemosphere.2010.09.053
Yao, S. C. and Xue, B. (2010). Nutrients and heavy metals in multi-cores from Zhushan Bay at Taihu lake, the largest shallow lake in the Yangtze Delta, China. Quat. Int., 226, 23–28.
Zhang, J. and Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China – weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci., 54, 1051–1070.