Characteristics and Health Risk of BTEX at Selected Different Microenvironments in an Industrial-Urban Area, Iran

Document Type : Original Research Paper


Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, P.O. Box: 46414-356, Mazandaran, Iran


The present study monitors BTEX concentration in outdoor and indoor air of eight different microenvironments during summer 2017 and winter 2018 at Asaloyeh city, Iran's energy capital. It samples BTEX compounds by charcoal tubes, analyzing the samples by means of a gas chromatograph with a flame ionization detector. According to the obtained results, outdoor concentrations of BTEX have been higher than the indoor ones, for both seasons, with the highest outdoor and indoor BTEX being 21.70 and 18.59 μg/m3, respectively. Toluene has been the most abundant substance, among the investigated BTEX in all sampling points. Based on the MIR scale, m, p-xylene is the most dominant contributor to ozone formation potential among BTEX species. Indoor to outdoor (I/O) ratios of BTEX compounds range from 0.53 to 0.88 and 0.41 to 0.77 in winter and summer, respectively. The cumulative hazard index (HI) is within an acceptable range. The LTCR value of benzene concentration, obtained, exceeds the value of 1.0E-06, recommended by USEPA. Sensitivity analysis shows that benzene concentration, exposure duration, and inhalation rate have a greater impact on health risk assessment.


Alexopoulos, E.C., Chatzis, C. and Linos, A. (2006). An analysis of factors that influence personal exposure to toluene and xylene in residents of Athens, Greece. BMC. Public Health., 50; 1-9.
Amini, H., Schindler, C., Hosseini, V., Yunesian, M. and Kunzli, N. (2017). Land Use Regression Models for Alkylbenzenes in a Middle Eastern Megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR). Environ. Sci. Tech., 51; 8481–8490.
Atabi, F., Jafarigol, F., Moattar, F. and Nouri, J. (2016). Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery. Environ. Monit. Assess., 19; 515–528.
Axelsson, G., Barregard, L., Holmberg, E. and Sallsten, G. (2010). Cancer incidence in a petrochemical industry area in Sweden. Sci. Total. Environ., 408; 4482–4487.
Azuma, K., Uchiyama, I., Uchiyama, S. and Kunugita, N. (2016). Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ. Res., 145; 39–49.
Baltrenas, P., Baltrenaite, E., Sereviciene, V. and Pereira, P. (2011). Atmospheric BTEX concentrations in the vicinity of the crude oil refinery of the Baltic region. Environ. Monit. Assess., 182; 115–127.
Bauri, N., Bauri, P., Kumar, K. and Jain, V.K. (2016). Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India). Air Qual. Atmos. Health., 9; 95–106.
Buonocore, J.J., Lee, H.J. and Levy, J.I. (2009). The influence of traffic on air quality in an urban neighborhood: a community-university partnership. Ameri. J. public. health., 99 Suppl 3; 629–635.
Tarassoli, A., et al.
Carter, W.P.L. (1994). Development of Ozone reactivity scales for volatile organic ompounds. J. Air. Waste. Manag, 44; 881–899.
Caselli, M., de Gennaro, G., Marzocca, A., Trizio, L. and Tutino, M. (2010). Assessment of the impact of the vehicular traffic on BTEX concentration in ring roads in urban areas of Bari (Italy). Chemosphere., 81; 306–311.
Ceron-Breton, J.G., Ceron-Breton, R.M., Kahl, J.D.W., Ramirez-Lara, E., Guarnaccia, C., Aguilar-Ucan, C.A., Montalvo-Romero, C., Anguebes-Franseschi, F. and Lopez-Chuken, U. (2015). Diurnal and seasonal variation of BTEX in the air of Monterrey, Mexico: preliminary study of sources and photochemical ozone pollution. Air Qual. Atmos. Health., 8; 469–482.
Chen, M.J., Lin, C.H., Lai, C.H., Cheng, L.H., Yang, Y.H., Huang, L.J., Yeh, S.H. and Hsu, H.T. (2016). Excess lifetime cancer risk assessment of volatile organic compounds emitted from a petrochemical industrial complex. Aero. Air Qual. Res., 16; 1954–1966.
Chen, W.H., Chen, Z. Bin, Yuan, C.S., Hung, C.H., and Ning, S.K. (2016). Investigating the differences between receptor and dispersion modeling for concentration prediction and health risk assessment of volatile organic compounds from petrochemical industrial complexes. J. Environ. Manag., 166; 440–449.
Civan, M.Y., Elbir, T., Seyfioglu, R., Kuntasal, O.O., Bayram, A., Dogan, G., Yurdakul, S., Andic, O., Muezzinoglu, A., Sofuoglu, S.C., Pekey, H., Pekey, B., Bozlaker, A., Odabasi, M. and Tuncel, G. (2015). Spatial and temporal variations in atmospheric VOCs, NO2, SO2, and O3 concentrations at a heavily industrialized region in Western Turkey, and assessment of the carcinogenic risk levels of benzene. Atmos. Environ., 103; 102–113.
Colborn, T., Schultz, K., Herrick, L. and Kwiatkowski, C. (2013). An Exploratory Study of Air Quality Near Natural Gas Operations. Human. Ecol. Risk. Assess., 20; 86–105.
Dai, H., Jing, S., Wang, H., Ma, Y., Li, L. and Song, W., Kan, H. (2017). VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ., 577; 73–83.
de Castro, B.P., de Souza Machado, G., Bauerfeldt, G.F., Nunes Fortes, J.D. and Martins, E.M. (2015). Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil. Atmos. Environ., 104; 22–26.
Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H.R., Miri, M., Baghani, A.N., Delikhoon, M., Mahvi, A.H. and Rashidi, M. (2018). Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotox. Environ. Safety., 155; 133–143.
Dehghani, M.H., Sanaei, D., Nabizadeh, R., Nazmara, S. and Kumar, P. (2017). Source apportionment of BTEX compounds in Tehran, Iran using UNMIX receptor model. Air Qual. Atmos. Health., 10; 225–234.
Demirel, G., Ozden, O., Do, T. and Gaga, E.O. (2014). Personal exposure of primary school children to BTEX , NO2 and ozone in Eskisehir , Turkey : Relationship with indoor / outdoor concentrations and risk assessment. Sci. Total. Environ., 474; 537–548.
Do, D. H., Van Langenhove, H., Walgraeve, C., and Hayleeyesus, S.F. (2013). Volatile organic compounds in an urban environment: A comparison among Belgium, Vietnam and Ethiopia. Int. J. Environ. Analy. Chem ., 93(3); 298–314.
Du, Z., Mo, J., Zhang, Y. and Xu, Q. (2014). Benzene, toluene and xylenes in newly renovated homes and associated health risk in Guangzhou, China. Build. Environ., 72; 75–81.
Edwards, R.D., Jurvelin, J., Saarela, K. and Jantunen, M. (2001). VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmos. Environ. 35, 4531–4543.
Esplugues, A., Ballester, F., Estarlich, M., Llop, S., Fuentes-Leonarte, V., Mantilla, E. and Iñiguez, C. (2010). Indoor and outdoor air concentrations of BTEX and determinants in a cohort of one-year old children in Valencia, Spain. Sci. Total. Environ., 409; 63–69.
European Environment Agency, (2017). Air quality in Europe - 2017 report, EEA Technical Report.
Fenech, A., Strlič, M., Kralj Cigić, I., Levart, A., Gibson, L.T., de Bruin, G., Ntanos, K., Kolar, J. and Cassar, M. (2010). Volatile aldehydes in libraries and archives. Atmos. Environ., 44; 2067–2073.
Hadei, M., Hopke P.K., Rafei, M., Rastkari, N., Yarahmadi, M., Kermani, M. and Shahsavani, A. (2018). Indoor and outdoor concentrations of BTEX and formaldehyde in Tehran, Iran: effects of building characteristics and health risk assessment. Environ. Sci. Pollut. Res., 25; 27423-27437.
Hajizadeh, Y., Mokhtari, M., Faraji, M., Mohammadi, A., Nemati, S., Ghanbari, R., Abdolahnejad, A., Fard, R.F., Nikoonahad, A., Jafari, N. and Miri, M. (2018). Trends of BTEX in the central urban area of Iran: A preliminary study
Pollution, 5(4): 895-911, Autumn 2019
of photochemical ozone pollution and health risk assessment. Atmos. Pollut. Res., 9, 220–229.
Han, X. and Naeher, L.P. (2006). A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int., 32; 106–120.
Hazrati, S., Rostami, R., Farjaminezhad, M. and Fazlzadeh, M. (2016). Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmos. Environ., 132; 91–97.
Hoque, R.R., Khillare, P.S., Agarwal, T., Shridhar, V. and Balachandran, S. (2008). Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India. Sci. Total. Environ., 392; 30–40.
Hun., D. E. Corsi., R. L. Morandi M. T.and Siegel J.A. (2011). Automobile proximity and indoor residential concentrations of BTEX and MTBE. Build. Environ., 46; 45-53.
Jiang, Z., Grosselin, B., Daële, V., Mellouki, A. and Mu, Y. (2017). Seasonal and diurnal variations of BTEX compounds in the semi-urban environment of Orleans, France. Sci. Total. Environ., 574; 1659–1664.
Kalenge, S., Lebouf, R.F., Hopke, P.K., Rossner, A. and Benedict-Dunn, A. (2013). Assessment of exposure to outdoor BTEX concentrations on the Saint Regis Mohawk Tribe reservation at Akwesasne New York State. Air Qual. Atmos. Health., 6; 181–193.
Kerchich, Y. and Kerbachi, R. (2012). Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers. J.Air. Waste. Manag. Assoc., 62; 1370–1379.
Kim, S.J., Kwon, H. O., Lee, M.I., Seo, Y. and Choi, S.D. (2019). Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea. Environ. Sci. Pollut. Res., 26; 5831-5841.
Khoder, M.I. (2007). Ambient levels of volatile organic compounds in the atmosphere of Greater Cairo. Atmos. Environ., 41; 554–566.
Kume, K., Ohura, T., Amagai, T. and Fusaya, M. (2008). Field monitoring of volatile organic compounds using passive air samplers in an industrial city in Japan. Environ.Pollut., 153; 649–657.
Lan, T.T.N. and Minh, P.A. (2013). BTEX pollution caused by motorcycles in the megacity of HoChiMinh. J. Environ. Sci., 25; 348–356.
Laowagul, W., Yoshizumi, K., Mutchimwong, A., Thavipoke, P., Hooper, M., Garivait, H. and Limpaseni, W. (2009). Characterisation of ambient benzene, toluene, ethylbenzene and m-, p- and o-xylene in an urban traffic area in Bangkok, Thailand. Int. J. Environ. Pollut., 36; 241–254.
Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C. and Wang, X. (2002a). Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere., 48; 375–382.
Lee, S.C., Li, W.M., and Ao, C.H. (2002b). Investigation of indoor air quality at residential homes in Hong Kong-case study. Atmos. Environ., 36; 225-237.
Lerner, J.E.C., Kohajda, T., Aguilar, M.E., Massolo, L.A., Sánchez, E.Y., Porta, A.A., Opitz, P., Wichmann, G., Herbarth, O. and Mueller, A. (2014). Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environ. Sci. Pollut. Res. 21, 9676–9688.
Li, L., Xie, S., Zeng, L., Wu, R. and Li, J. (2015). Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos. Environ., 113; 247–254.
Majumdar, D., Mukherjee, A.K., Mukhopadhaya, K. and Sen, S. (2012). Variability of BTEX in residential indoor air of Kolkata metropolitan city. Indoor. Built. Environ., 21; 374–380.
Masih, A., Lall, A.S., Taneja, A. and Singhvi, R. (2017). Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere., 176; 8–17.
Masih, A., Lall, A.S., Taneja, A. and Singhvi, R. (2016). Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India. Atmos. Environ., 147; 55–66.
Miller, L., Xu, X., Grgicak-Mannion, A., Brook, J. and Wheeler, A. (2012). Multi-season, multi-year concentrations and correlations amongst the BTEX group of VOCs in an urbanized industrial city. Atmos. Environ., 61; 305–315.
Miri, M., Rostami Aghdam Shendi, M., Ghaffari, H.R., Ebrahimi Aval, H., Ahmadi, E., Taban, E., Gholizadeh, A., Yazdani Aval, M., Mohammadi, A. and Azari, A. (2016). Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere., 163; 601–609.
Missia, D.A., Demetriou, E., Michael, N., Tolis, E.I. and Bartzis, J.G. (2010). Indoor exposure from building materials: A field study. Atmos. Environ., 44; 4388–4395.
Tarassoli, A., et al.
Monod, A., Sive, B.C., Avino, P., Chen, T., Blake, D.R. and Sherwood Rowland, F. (2001). Monoaromatic compounds in ambient air of various cities: A focus on correlations between the xylenes and ethylbenzene. Atmos. Environ., 35; 135–149.
Muezzinoglu, Odabasi, M. and Onat, L. ( 2001). Volatile organic compounds in the air of Izmir, Turkey. Atmos. Environ., 35; 753–760.
Mullaugh, K.M., Hamilton, J.M., Avery, G.B., Felix, J.D., Mead, R.N., Willey, J.D. and Kieber, R.J. (2015). Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere., 134; 203–209.
Na, K., Moon, K. and Pyo, Y. (2005). Source contribution to aromatic VOC concentration and ozone formation potential in the atmosphere of Seoul. Atmos. Environ., 39; 5517–5524.
Niu, Z., Zhang, H., Xu, Y., Liao, X., Xu, L. and Chen, J. (2012). Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China. J. Environ. Monit., 14; 1145.
OEHHA, (2003). Air Toxics Hot Spots Program Risk Assessment Guidelines.
Ongwandee, M., Moonrinta, R., Panyametheekul, S., Tangbanluekal, C. and Morrison, G. (2011). Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms. Build. Environ., 46; 1512–1522.
Rad, H.D., Babaei, A.A., Goudarzi, G., Angali, K.A., Ramezani, Z. and Mohammadi, M.M. (2014). Levels and sources of BTEX in ambient air of Ahvaz metropolitan city. Air Qual. Atmos. Health., 7; 515–524.
Ramirez, N., Cuadras, A., Rovira, E., Borrull, F. and Marce, R.M. (2012). Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int., 39; 200–209.
Raysoni, A.U., Stock, T.H., Sarnat, J.A., Chavez, M.C., Sarnat, S.E., Montoya, T., Holguin, F. and Li, W.W. (2017). Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environ. Pollut., 231; 681–693.
Ren, M., Li, N., Wang, Z., Liu, Y., Chen, X., Chu, Y., Li, X., Zhu, Z., Tian, L. and Xiang, H. (2017). The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: Comparison of time-series and case-crossover analyses. Sci. Rep., 7; 1–9.
Serrano-Trespalacios, P.I., Ryan, L., and Spengler, J.D. (2004). Ambient, indoor and personal exposure relationships of volatile organic compounds in Mexico City Metropolitan Area. J of Expo Sci Environ Epidem., 14; 118-132.
Singh, R., Gaur, M. and Shukla, A. (2016). Seasonal and spatial variation of BTEX in ambient air of Delhi. J. Environ. Prot., 12; 670–688.
Son, B., Breysse, P. and Yang, W. (2003). Volatile organic compounds concentrations in residential indoor and outdoor and its personal exposure in Korea. Environ. Int., 29; 79–85.
Statistical Center of Iran, Plan and Budget Organization. (2016). The Statistical Yearbook of Iran. 1-937.
Stranger, M., Potgieter-Vermaak, S.S. and Van Grieken, R. (2007). Comparative overview of indoor air quality in Antwerp, Belgium. Environ. Int., 33; 789–797.
Su, F.C., Mukherjee, B. and Batterman, S. (2013). Determinants of personal, indoor and outdoor VOC concentrations: An analysis of the RIOPA data. Environ. Res. 126, 192–203.
Tam, B.N. and Neumann, C.M. ( 2004). A human health assessment of hazardous air pollutants in Portland, OR. J. Environ. Manag., 73; 131–145.
Tiwari, V., Hanai, Y. and Masunaga, S. (2010). Ambient levels of volatile organic compounds in the vicinity of petrochemical industrial area of Yokohama, Japan. Air Qual. Atmos. Health. 3, 65–75.
Tong, L., Liao, X., Chen, J., Xiao, H., Xu, L., Zhang, F., Niu, Z. and Yu, J. (2013). Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. Environ. Sci. Pollut. Res., 20; 2603–2615.
Uchiyama, S., Tomizawa, T., Tokoro, A., Aoki, M., Hishiki, M., Yamada, T., Tanaka, R., Sakamoto, H., Yoshida, T., Bekki, K., Inaba, Y., Nakagome, H. and Kunugita, N. (2015). Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Environ Res., 137; 364–372.
USEPA, (2013). Sustainability and the ROE. EPA’s Report on the Environment.
Vicente, E.D., Ribeiro, J.P., Custodio, D. and Alves, C.A. (2017). Assessment of the indoor air quality in copy centres at Aveiro, Portugal. Air Qual. Atmos. Health., 10; 117–127.
Vo, T.D.H., Lin, C., Weng, C.E., Yuan, C.S., Lee, C.W., Hung, C.H., Bui, X.T., Lo, K.C. and Lin, J.X. (2018). Vertical stratification of volatile organic compounds and their photochemical product formation potential in an industrial urban area. J. Environ. Manag., 217; 327–336.
Pollution, 5(4): 895-911, Autumn 2019
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Wang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S. and Zhang, H. (2016). Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmos. Pollut. Res., 7; 711–724.
WHO, (2000). Air quality guidelines for Europe. Environ. Sci. Pollut. Res., 3; 23–23.
Yurdakul, S., Civan, M., Ozden, O., Dogeroglu, T., Tuncel, G., 2017. Spatial variation of VOCs and inorganic pollutants in a university building. Atmos. Pollut. Res., 8; 1–12.
Zhang, G., Wang, N., Jiang, X. and Zhao, Y. (2017). Characterization of Ambient Volatile Organic Compounds ( VOCs ) in the Area Adjacent to a Petroleum Refinery in Jinan , China. Aero. Air Qual. Res., 12; 944–950.
Zhang, Y., Mu, Y., Liu, J. and Mellouki, A. (2012). Levels , sources and health risks of carbonyls and BTEX in the ambient air. J. Environ. Sci., 24; 124–130.
Zhao, L., Wang, X., He, Q., Wang, H., Sheng, G., Chan, L.Y., Fu, J. and Blake, D.R. (2004). Exposure to hazardous volatile organic compounds, PM10 and CO while walking along streets in urban Guangzhou, China. Atmos. Environ., 38; 6177–6184.