Human Health Risk Assessment of Nitrate and Trace Metals Via Groundwater in Central Bangladesh

Document Type: Original Research Paper


1 Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342, Bangladesh

2 Climate Change Programme, BRAC, Dhaka 1212, Bangladesh

3 Department of Textile Engineering, City University, Bangladesh

4 Graduate School of Environmental Science, Hokkaido University, Japan

5 Department of Public Health and Informatics, Jahangirnagar University, Dhaka, Bangladesh


Groundwater plays a pivotal role as the largest potable water sources in Bangladesh. As agriculture is widely practiced in Bangladesh, potential nitrate (NO3¯) pollution may occur. Besides, excess amount of arsenic (As) has already been found in groundwater in many parts of Bangladesh including the present study area. Thus, this study was conducted to assess the NO3¯ status along with some trace metals and associated human health risk in the Central Bangladesh. A total of 99 groundwater samples were analyzed to assess human health risk due to high level of NO3¯ and other trace elements i.e. arsenic (As), iron (Fe), and manganese (Mn). Concentration of NO3¯ was determined using column chromatography and inductively coupled plasma optical emission spectrometer (ICP-OES) was used to measure As, Fe and Mn concentrations. It was found that the mean concentration of NO3¯ 253.17 (mg/L) in the groundwater samples exceeds the recommended guideline value by the WHO (50 mg/L). Moreover, this study area also characterized with elevated concentration of As (19.44 μg/L), Fe (811.35 μg/L), and Mn (455.18 μg/L) in the groundwater. Non-carcinogenic human health risk was calculated by justifying HQ (Hazard Quotient) and HI (Hazard Index) and attributed potential conjunctive human health risks due to NO3¯, As, Fe and Mn in the study area. Child (9.941) is more vulnerable than adult (7.810) considering non-carcinogenic human health risk. Moreover, high carcinogenic risk was found due to As contamination in the groundwater samples and children (1.94×10-3) are more susceptible to carcinogenic risk compared to adults (9.2×10-4).


Adebowale, T., Surapaneni, A., Faulkner, D., McCance, W., Wang, S. and Currell, M. (2019). Delineation of contaminant sources and denitrification using isotopes of nitrate near a wastewater treatment plant in peri-urban settings. Sci. Total Environ. 2701-2711. doi:10.1016/j.scitotenv.2018.10.146
Ahada, C.P.S. and Suthar, S. (2018). Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India. Environ. Sci. Pollut. Res. Int. 25, 25336-25347. doi:10.1007/s11356-018-2581-2
Ahamad, A., Madhav, S., Singh, P., Pandey, J. and Khan, A.H. (2018). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India. Appl. Water Sci. 8(4). doi:10.1007/s13201-018-0759-x
Biddau, R., Cidu, R., Da Pelo, S., Carletti, A., Ghiglieri, G. and Pittalis, D. (2019). Source and fate of nitrate in contaminated groundwater systems: Assessing spatial and temporal variations by hydrogeochemistry and multiple stable isotope tools. Sci. Total Environ., 647, 1121-1136. doi:10.1016/j.scitotenv.2018.08.007
Bodek, I., Lyman, W. J., Reehl, W. F. and Rosenblatt, D. H. (1988). Environmental Inorganic Chemistry: Properties, Processes and Estimation Methods, Pergamon Press, Elmsford, NY, USA.
Bortey-Sam, N., Nakayama, S.M., Ikenaka, Y., Akoto, O., Baidoo, E., Mizukawa, H. and Ishizuka, M. (2015). Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana. Environ. Monit. Assess. 187, 397. DOI 10.1007/s10661-015-4630-3
Chen, Y., Graziano, J.H., Parvez, F., Liu, M., Slavkovich, V., Kalra, T., Argos, M., Islam, T., Ahmed, A., Rakibuz-Zaman, M., Hasan, R., Sarwar, G., Levy, D., Geen, A.V. and Ahsan, H. (2011). Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ, 342, d2431
Das, B., Rahman, M.M., Nayak, B., Pal, A., Chowdhury, U.K., Mukherjee, S.C., Saha, K.C., Pati, S., Quamruzzaman, Q. and Chakraborti, D. (2009). Groundwater arsenic contamination, its health effects and approach for mitigation in West Bengal, India and Bangladesh. Water Qual. Expo. Health 1, 5–21. DOI.10.1007/s12403-008-0002-3
Dellavalle, C.T., Xiao, Q., Yang, G., Shu, X.O., Aschebrook-Kilfoy, B., Zheng, W., Lan, L.H., Ji, B.T., Rothman, N., Chow, W.H., Gao, Y.T. and Ward, M.H. (2014). Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study. Int. J. Cancer. 134(12), 2917-2926. Doi: 10.1002/ijc.28612.
Rahman, M. M., et al.
ECETOC (European Center for Ecotoxicology of Chemical) 2001. Aquatic Toxicity of Mixtures. Technical Report. 80, Brussels.
Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect. 112, 1371–1374.
Giri, S. and Singh, A.K. (2015). Human health risk assessment via drinking water pathway due to metal contamination in the ground water of Subarnarekha river basin, India. Environ. Monit. Assess. 187, 63.
Greer, F.R. and Shannon, M (2005). Infant methemoglobinemia: The role of dietary nitrate in food and water. Paediatrics., 116, 784–786.
Huno, S.K.M., Rene, E.R., van Hullebusch, E.D. and Annachhatre, A.P. (2018). Nitrate removal from groundwater: a review of natural and engineered processes. J. Water Supply Res. T. 67(8), 885-902. doi:10.2166/aqua.2018.194 Islam, M., Bashar, K., Ahmed, N., Rasul, M. G., Hossain, S. and Sarker, M.M. (2018). Hydrogeologic Characteristics and Groundwater Potentiality of Lower Aquifer of Singair Upazila, Manikganj District, Bangladesh. Journal of Bangladesh Academy of Sciences, 42(1), 25-40. Joseph, T., Dubey, B. and McBean, E. A. (2015). A critical review of arsenic exposures for Bangladeshi adults. Science of The Total Environment, 527-528, 540–551.doi:10.1016/j.scitotenv.2015.05.035
Kavcar, P., Sofuoglu, A. and Sofuohlu, S.C. (2009). A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health 212, 216-227.
Kundu, M.C. and Mandal, B. (2008a). Agriculture activities influence nitrate and fluoride contamination in drinking groundwater of an intensively cultivated district in India, Water air Soil Pollut. doi:10.1007/s1270-008-9842-5
Kundu, M.C., Mandal, B. and Sarkar, D. (2008b). Assessment of the potential hazardous of nitrate contamination in surface and groundwater in a heavily fertilized and intensively cultivated district of India. Environ. Monit. Assess. 146, 183–189
Li, P., He, X. and Guo, W. (2019). Spatial groundwater quality and potential health risks due to nitrate ingestion through drinking water: A case study in Yan’an City on the Loess Plateau of northwest China. Hum. Ecol. Risk Assess. 1-21. doi:10.1080/10807039.2018.1553612
Li, P., Wu, J., Qian, H., Lyu, X. and Liu. H. (2013). Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ. Geochem. Health. 36, 693-712.
Lim, H.S., Lee, J.S., Chon, H.T. and Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochem. Explor. 96, 223–230.
Lohumi, N., Gosain, S., Jain, A., Gupta, V.K. and Verma, K.K. (2004). Determination of nitrate in environmental water samples by conversion into nitrophenols and solid phase extraction-spectrophotometry, liquid chromatography or gas chromatography–mass spectrometry, Anal. Chim. Acta 505, 231–237.
Ma, H.W., Hung, M.L. and Chen, P.C. (2007). A systemic health risk assessment for chromium cycle in Taiwan. Environ. Int. 33, 206-218.
Majumder, R.K., Hasnat, M.A., Hossain, S., Ikeue, K. and Machida, M. (2008). An exploration of nitrate concentrations in groundwater aquifers of central-west region of Bangladesh. J. Hazard. Mater. 159, 536-543
Marques Arsénio, A., Câmara Salim, I., Hu, M., Pedro Matsinhe, N., Scheidegger, R. and Rietveld, L. (2018). Mitigation potential of sanitation infrastructure on groundwater contamination by nitrate in Maputo. Sustainability, 10, 858. doi:10.3390/su10030858
Martinelli, G., Dadomo, A., De Luca, D. A., Mazzola, M., Lasagna, M., Pennisi, M. and Saccon, P. (2018). Nitrate sources, accumulation and reduction in groundwater from Northern Italy: Insights provided by a nitrate and boron isotopic database. Appl. Geochem. 91, 23-35. doi:10.1016/j.apgeochem.2018.01.011.
Mehrdadi, N., Nabi Bidhendi, G. R., Nasrabadi, T., Hoveidi, H., Amjadi, M. and Shojaee, M. A. (2009). Monitoring the arsenic concentration in groundwater resources, case study: Ghezel ozan water basin, Kurdistan, Iran. Asian journal of chemistry, 21(1), 446-450.
Messier, K.P., Wheeler, D.C., Flory, A.R., Jones, R.R., Patel, D., Nolan, B.T. and Ward, M.H. (2019). Modeling groundwater nitrate exposure in private wells of North Carolina for the agricultural health study. Sci Total Environ. 655, 512-519. doi:10.1016/j.scitotenv.2018.11.022
Momot, O. and Synzynys, B. (2005). Toxic aluminium and heavy metals in ground wate of middle Russis: health risk assessment. Int. J. Environ. Res. Pub. Health 2, 214-218.
Nasrabadi, T. and Maedeh, P. A. (2014). Groundwater quality assessment in southern parts
Pollution, 6(2): 263-276, Spring 2020
of Tehran plain, Iran. Environmental earth sciences, 71(5), 2077-2086.
Nasrabadi, T., Maedeh, P. A., Sirdari, Z. Z., Bidabadi, N. S., Solgi, S. and Tajik, M. (2015). Analyzing the quantitative risk and hazard of different waterborne arsenic exposures: case study of Haraz River, Iran. Environmental earth sciences, 74(1), 521-532.
Ning, L., Ni, T., Xia, J., Dai, M., He, C. and Lu, G. (2011). Non-carcinogenic risks induced by metals in drinking source water of Jiangsu Province, China. Environ. Monit. Assess. 177, 449–456. DOI 10.1007/s10661-010-1646-6.
Paladino, O., Seyedsalehi, M. and Massabo, M. (2018). Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters. Sci. Total Environ. 634, 427-438. doi:10.1016/j.scitotenv.2018.03.320
Pannala, A.S., Mani, A.R., Spencer, J.P.E., Skinner, V., Bruckdorfer, K.R., Moore, K.P. and Rice-Evans, C.A. (2003). The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 34, 576–584.
Qasemi, M., Afsharnia, M., Farhang, M., Bakhshizadeh, A., Allahdadi, M. and Zarei, A. (2018). Health risk assessment of nitrate exposure in groundwater of rural areas of Gonabad and Bajestan, Iran. Environ. Earth Sci. 77(15). doi:10.1007/s12665-018-7732-8
Rachid, A., Christophe, M., Marc, B., Laure, O., Sylvie, T. and Paul, P. (2006). Methemoglobinemia by cerium nitrate poisoning, Burns 32, 1060–1061.
Rahman, M., Islam, M., Bodrud-Doza, M., Muhib, M., Zahid, A., Shammi, M. and Kurasaki, M. (2017). Spatio-temporal assessment of groundwater quality and human health risk: a case study in Gopalganj, Bangladesh. Expo Health. doi:10.1007/s12403-017-0253-y
Rahman, M.M., Sultana, R., Shammi, M., Bikash, J., Ahmed, T., Maruo, M., Kurasaki, M. and Uddin, M.K. (2016). Assessment of the status of groundwater arsenic at SingairUpazila, Manikganj, Bangladesh; Exploring the correlation with the other metals and ions. Expo. Health 8, 217–225.
Rizeei, H. M., Azeez, O. S., Pradhan, B. and Khamees, H. H. (2018). Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environ. Monit. Assess. 190(11), 633. doi:10.1007/s10661-018-7013-8
Shukla, S. and Saxena, A. (2018). Global status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measures. 1-21. doi:10.1007/978-3-319-58538-3_20-1
Sohel, N., Persson, L.A., Rahman, M., Streatfield, P.K., Yunus, M., Ekstro¨m, E.C. and Vahter, M. (2009). Arsenic in Drinking Water and Adult Mortality A Population-based Cohort Study in Rural Bangladesh. Epidemiology, 20, 824–830
Suthara, S., Bishnoib, P., Singh, S., Mutiyara, P.K., Nemaa, A.K. and Patil. N.S. (2009). Nitrate contamination in groundwater of some rural areas of Rajasthan, India. J. Hazard. Mater. 171, 189–199
Taufiq, A., Effendi, A. J., Iskandar, I., Hosono, T. and Hutasoit, L. M. (2019). Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Water Res., 148, 292-305. doi:10.1016/j.watres.2018.10.049
Tavakoly, A.A., Habets, F., Saleh, F., Yang, Z.-L., Bourgeois, C. and Maidment, D.R. (2019). An integrated framework to model nitrate contaminants with interactions of agriculture, groundwater, and surface water at regional scales: The STICS–EauDyssée coupled models applied over the Seine River Basin. J. Hydrol. 568, 943-958. doi:10.1016/j.jhydrol.2018.11.061
USEPA (US Environmental Protection Agency) (1989). Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A). United States Environmental Protection Agency, Washington, D.C.
USEPA (US Environmental Protection Agency) (1993). Risk assessment guidance for superfund (RAGS), volume I: human health evaluation manual (part E) interim. United States Environmental Protection Agency, Washington, D.C.
USEPA (US Environmental Protection Agency) (1999). A risk assessment-multiway exposure spreadsheet calculation tool. United States Environmental Protection Agency. Washington, D.C.
USEPA (US Environmental Protection Agency) (2001). Baseline human health risk assessment, Vasquez Boulevard and 1-70 superfund site, Denver CO.
USEPA (US Environmental Protection Agency) (2009). National primary/secondary and drinking water regulations. Washington, D.C.
Rahman, M. M., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Wagh, V. M., Panaskar, D. B., Mukate, S. V., Aamalawar, M. L. and Laxman Sahu, U. (2019). Nitrate associated health risks from groundwater of Kadava River Basin Nashik, Maharashtra, India. Hum. Ecol. Risk Assess. 1-19. doi:10.1080/10807039.2018.1528861
Ward, M.H., DeKok, T.M., Levallois, P., Brender, J., Gulis, G., Nolan, B.T. and Derslice, J.V. (2005). Workgroup report: Drinking-water nitrate and health—Recent findings and research needs, Environ.Health Perspect. 113, 1607–1614.
Weyer, P.J., Cerhan, J.R., Kross, B.C., Hallberg, G.R., Kantamneni, J., Breuer, G., Jones, M.P., Zheng, W. and Lynch, C.F. (2001). Municipal drinking water nitrate level and cancer risk in older women: the Iowa women’s health study. Epidemiology 11, 3.
Wild, L. M., Mayer, B. and Einsiedl, F. (2018). Decadal delays in groundwater recovery from nitrate contamination caused by low O2 reduction rates. Water Resour. Res. doi:10.1029/2018wr023396
Wongsasuluk, P., Chotpantarat, S., Siriwong, W., and Robson, M. (2013). Heavy metal contamination and human health risk assessment indrinking water from shallow groundwater wells in an agricultural area in UbonRatchathani province, Thailand. Environ. Geochem. Health 36, 169–182. DOI.10.1007/s10653-013-9537-8
Wu, B., Zhang, Y., Zhang, X., and Cheng, S. (2010). Health risk from exposure of organic pollutants through drinking water consumption in Nanjing, China. Bull. Environ. Contam. Toxicol. 84, 46-50.
Zhai, Y., Zhao, X., Teng, Y., Li, X., Zhang, J., Wu, J., and Zuo, R. (2017). Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol. Environ. Saf. 137, 130-142
Zhang, Y., Wu, J., and Xu, B. (2018). Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 77(7). doi:10.1007/s12665-018-7456-9