The Effectiveness of the Ballast Water Exchange Method in Removal of the Heavy Metals in the Ballast Tanks of the Ships, Bushehr Port- Persian Gulf

Document Type : Original Research Paper


1 Department of Environmental Sciences, Ahvaz Branch, Islamic Azad University, P.O.Box 61394-37333, Ahvaz, Iran

2 Depaetment of Fisheries, Ahvaz Branch, Islamic Azad University, P.O.Box 61394-37333, Ahvaz, Iran

3 Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, P.O.Box 7516913817, Bushehr, Iran

4 Shrimp Research Center, Iranian fisheries Science Research Institute, Agricultural Research Education and Extention Organization, P.O. Box: 1374, Bushehr, Iran


Ships transport about 80 percent of world trade and transfer approximately three to five billion tons of ballast water internationally every year. Due to the likely presence of pollutants, the ballast water discharged by ships can have negative effects on aquatic ecosystems. This study was conducted on 10 ships that entered the Bushehr port to determine the effectiveness of the ballast water exchange method and also to specify the contents of heavy metals (Ni, Cd, Pb and Cu) in the water and sediment of the ships’ ballast tanks. The samples were collected from January 2017 to July 2018 during a cold and a hot season. The results indicate the values of heavy metals in the samples in this order: Ni> Cu > Pb > Cd. The heavy metals concentrations in the sediment samples did not exceed the standard of the National Oceanic and Atmospheric Administration (NOAA). Whereas, Cu and Ni in all water samples and Cd in samples 2 and 7 exceeded the NOAA quality standard value. A correlation analysis of the metals showed that the sources of heavy metals vary in water and sediment samples, except for Pb and Cu in sediment samples which a positively significant relationship were observed. The results also revealed that the ballast water exchange method cannot by itself be effective and an efficient management together with continuous monitoring seems to be essential to prevent pollution of the ballast tanks of the ships entering the Bushehr port.


Agah, H., Elskens, M., Fatemi, S. M. R., Owfi, F., Baeyens, W. and Leermakers, M. (2009). Mercury speciation in the Persian Gulf sediments. Environ. Monit. Assess. 157(1-4);363-373.
Tolian, R., et al.
Aklil, A., Mouflih, M. and Sebti, S. (2004). Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent., J. Hazard. Mater., 112(3); 183-190.
Al-Sarawi, M., Massoud, M. S. and Al-Abdali, F. (1998). Preliminary assessment of oil contamination levels in soils contaminated with oil lakes in the greater Burgan oil fields, Kuwait, Water Air and Soil Pollut., 106(3-4); 493-504.
Babel, S. and Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review., J. Hazard. Mater., 97(1-3); 219-243.
Balaji, R. and Yaakob, O. B., (2011). Emerging ballast water treatment technologies: a review. J. Sustainability Sci. Manage, 6(1); 126-138.
Barakat, M. A., Chen, Y. T. and Huang, C. P. (2004). Removal of toxic cyanide and Cu (II) Ions from water by illuminated TiO2 catalyst. J. Appl. Catal. B: Environ., 53(1); 13-20.
Basurko, O. C. and Mesbahi, E. (2011). Statistical representativeness of ballast water sampling. Proceedings of the Institution of Mechanical Engineers, Part M. J. Eng. Marit. Environ., 225(3); 183-190.
Biati, A., Nikoomaram, H. and Karbassi, A. R. (2012). Study of metals concentrations in surface sediments of the Persian Gulf coastal area (Bushehr Province). Int. J. Mar. Sci. Eng., 2(1); 75-80.
David, M., Pirelli, F., Alessandro, P. and Gollasch, S. (2016). Compliance monitoring and enforcement measures and decision support.
Dobaradaran. S., Soleimani, F., Nabipour, I., Saeedi, R. and Mohammadi, M. J. (2018). Heavy metal levels of ballast waters in commercial ships entering Bushehr port along the Persian Gulf. Mar. Pollut. Bull., 126; 74-76.
Elshorbagy, W. (2005). Overview of marine pollution in the Arabian Gulf with emphasis on pollutant transport modeling. In Keynote Address for the First International Conference on Coastal Zone Management and Engineering in the Middle East held at Dubai, United Arab Emirates, on 27th–29th November.
Feng, D., Chen, X., Tian, W., Qian, Q., Shen, H., Liao, D. and Lv, B. (2017). Pollution characteristics and ecological risk of heavy metals in ballast tank sediment. J. Environ. Sci. Pollut. Res., 24(4); 3951-3958.
Firestone, J. and Corbett, J.J., (2005). Coastal and port environments: international legal and policy responses to reduce ballast water introductions of potentially invasive species. Ocean Dev. Int. Law., 36(3); 291-316.
Giller, K. E., Witter, E. and Mcgrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. J. Soil boil. Biochem., 30(10-11); 1389-414.
Govind, P. and Madhuri, S. (2014). Heavy metals causing toxicity in animals and fishes. Res. J. Anim. Vet. Fish. Sci., 2(2); 17-23.
Gollasch, S. (1997). Removal of barriers to the effective implementation of ballast water control and management measures in developing countries. Report of GEF/IMO/UNDP Project. IMO, London.
Hallegraeff, G.M. and Bolch, C. J. (1991). Transport of toxic dinoflagellate cysts via ships' ballast water. Mar. Pollut. Bull., 22(1); 27-30.
Hameed I, Soomro Y. A, Shakoor R, Butt A S. 2012. Coastline Pollution Problems of Karachi. Int. J. Emerg. Trends in Eng. Dev., 4(2); 528-537.
Hayes, M. O., Michel, J., Montello, T. M., Aurand, D. V., Al-Mansi, A. M., Al-Moamen, A. H. and Thayer, G. W. (1993). Distribution and weathering of shoreline oil one year after the Gulf War oil spill. Mar. Pollut. Bull., 27; 135-142. Haiyan, W. and Stuanes, A. O. (2003). Heavy metal pollution in air–water–soil–plant system of Zhuzhou City, Hunan Province, China. Water Air and Soil Pollut., 147(1-4); 79-107.
Holm, E. R., Stamper, D. M., Brizzolara, R. A., Barnes, L., Deamer, N. and Burkholder, J. M. (2008). Sonication of bacteria, phytoplankton and zooplankton: application to treatment of ballast water. Mar. Pollut. Bull., 56(6); 1201-1208.
Hori, H., Nagaoka, Y., Murayama, M. and Kutsuna, S. (2008). Efficient Decomposition of Perfluorocarboxylic Acids and Alternative Fluorochemical Surfactants in Hot Water. Environ. Sci. Technol., 42(19); 7438-7443.
Hume, B., D’angelo, C., Burt, J., Baker, A. C., Riegl, B. and Wiedenmann, J. (2013). Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar. Pollut. Bull., 72(2); 313-322.
Kajitvichyanukul, P., Ananpattarachaia, J. and Pongpom, S. (2005). Sol–gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium (VI) in photocatalysis process. Sci. Technol. Adv. Mater., 6(3-4); 352-358.
Pollution, 6(2): 305-316, Spring 2020
Karbassi, A. R., Nabi-Bidhendi. Gh. R. and Bayati, I. (2005). Environmental geochemistry of heavy metals in a sediment core of bushehr, Persian Gulf. J. Environ. Health Sci. Eng., 2(4); 255-260.
Kozai, K., Ishida, H., Okamoto, K. and Fukuyo, Y. (2006). Feasibility study of ocean color remote sensing for detecting ballast water. Adv. Space Res., 37(4); 787-792.
Kuffner, B. I., Andersson, A. J., Jokiel, P. L., Rodgers, K. S, Mackenzie, F. T. (2008). Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci., 1(2); 114-117.
Kurniawan, T. A., Chan, G. Y. S., Lo, W. H. and Babel, S. (2006). Physicochemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J., 118(1-2); 83-98.
Lattemann, S. and Höpner, T. (2008). Impacts of seawater desalination plants on the marine environment of the Gulf. In Protecting the Gulf’s Marine Ecosystems from Pollution, 191-205, Birkhäuser Basel.
Lin, Y. C., Chang-Chien, G. P., Chiang, P. C., Chen, W. H. and Lin, Y. C. (2013). Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Mar. Pollut. Bull., 76(1-2); 266-275. Liu, T.K., Wang, Y.C. and Su, P.H. (2019). Implementing the ballast water management convention: Taiwan's experience and challenges in the early stage. Mar. Policy, 109; 103706.
Maglic, L., Zec, D. and Francic, V. (2016). Ballast water sediment elemental analysis. Mar. Poll. Bull., 103(1–2); 93-100.
Massoud, M. S., Al–Abdali, F. and Al–Ghadban, A. N. (1998). The status of oil pollution in the Arabian Gulf by the end of 1993. Environ. Int., 24(1-2); 11-22.
Mir Mohammad, A., Mohammad Lokman, A., Saiful Islamc, M. D. and Zillur Rahman, M. D. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh’, Environ. Nanotechnol. Monit. Manage., 5; 27-35.
Mohammadi, T., Moheb, A., Sadrzadeh, M. and Razmi, A. (2005). Modeling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol., 41(1); 73-82.
Moyel, M. S., Amteghy, A. H., Hassan, W. F., Mahdi, E. A. and Khalaf, H. H. (2015). Application and evaluation of water quality pollution indices for heavy metal conmanitation as a monitoring tool in Shatt Al Arab River. J. int. acad. Res. Multi., 3(4); 67-75.
Murphy, K. R., Field, M. P., Waiteb. T. D. and Ruiza, G. M. (2008). Trace elements in ships' ballast water as tracers of mid-ocean exchange. Sci. Total Environ., 393(1); 11-26.
Nosrati-Ghods, N., Ghadiri, M. and Früh, W. G. (2017). Management and environmental risk study of the physicochemical parameters of ballast water. Mar. Pollut. Bull., 114(1); 428-438.
Naser, H. A. (2013). Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: A review. Mar. Pollut. Bull., 72(1); 6-13.
Noroozi Karbasdehi, V., Dobaradaran, S., Mirahmadi, S. R., Mokhtari, H., Darabi, H. and Faraji, F. (2015). Survey of microbiological and chemical quality of the swimming beaches along the Persian Gulf in Bushehr port. Teb Jonob., 18(2); 393-408. (In Persian).
Pourang, N., Nikouyan, A. and Dennis, J. H. (2005). Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environ. Monit. Assess., 109(1-3); 293-316.
Rahman, S. (2017). Implementation of Ballast Water Management plan in ships through ballast water exchange system. Procedia Eng., 194; 323-329.
Safari, M., Ramavandi, B., Sanati, A. M., Sorial, G. A., Hashemi, S. and Tahmasebi, S. (2018). Potential of trees leaf/bark to control atmospheric metals in a gas and petrochemical zone. J. Environ. Manage., 222; 12-20.
Sale, P. F., Feary, D. A., Burt, J. A., Bauman, A. G., Cavalcante, G. H., Drouillard, K. G., Kjerfve, B., Marquis, E., Trick, C. G., Usseglio, P. and Van Lavieren, H. (2011). The growing need for sustainable ecological management of marine communities of the Persian Gulf. Ambio, 40(1); 1-4.
Sheppard, C. R. (1993). Physical environment of the gulf relevant to marine pollution: an overview. Mar. Pollut. Bull., 27; 3-8.
Serrano, L. and DeLorenzo, M. E. (2008). Water quality and restoration in a coastal subdivision stormwater pond. J. Environ. Manage., 88(1); 43-52.
Sin, S. N., Chua, H., Lo, W. and Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ. Int., 26(5-6); 297-301.
Taylor, A., Rigby, G., Gollasch, S., Voigt, M., Hallegraeff, G., McCollin, T. and Jelmert, A. (2002). Preventive treatment and control techniques for ballast water. In Invasive Aquatic Species of
Tolian, R., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Europe. Distribution, Impacts and Management (pp. 484-507), Springer, Dordrecht.
Tjahjono, A., Bambang, A. N. and Anggoro, S. (2017). Analysis of heavy metal content of Cd and Zn in ballast water tank of commercial vessels in port of Tanjung Emas Semarang, Central Java Province. In IOP Conference Series: Earth Environ. Sci. Trans, 55(1); 012024. IOP Publishing.
Triska, F. J., Jackman, A. P., Duff, J. H. and Avanzino, R. J. (1994). Ammonium sorption to channel and riparian sediments: A transient storage pool for dissolved inorganic nitrogen. J. Biogeochem, 26(2); 67-83.
Wang, S., Wang, H., Zhao, Z. and Liu, B. (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. J. Environ. Sci., 22(1); 23-31.
Zhang, A., Wang, L., Zhao, S., Yang, X., Zhao, Q., Zhang, X. and Yuan, X. (2017). Heavy metals in seawater and sediments from the northern Liaodong Bay of China: Levels, distribution and potential risks. Reg. Stud. Mar. Sci., 11; 32-42.
Zhou, J., Ma, D., Pan, J., Nie, W. and Wu, K., (2008). Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ. Geol, 54(2); 373-380.
Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard Mater. 15(195); 355-364.
Vink, J. P. M. (2002). Measurement of Heavy Metal Speciation over Redox Gradients in Natural Water–Sediment Interfaces and Implications for Uptake by Benthic Organisms. J. Environ. Sci. Technol, 36(23); 5130-5138.