Utilization of Algal Consortium to Produce Biofuels and Byproducts For Reducing Pollution load

Document Type: Original Research Paper

Authors

1 Department of Chemistry, JSS Academy of Technical Education, NOIDA, U.P, India

2 Department of Environmental Science, Bhagwant University, Ajmer, India

3 Department of Chemistry, ABES Engineering College, Ghaziabad, U.P, India

4 Department of Physics, JSS Academy of Technical Education, NOIDA, U.P, India

5 Indira Gandhi National Open University, Regional Centre Head Office, Jammu (Tawi) India

Abstract

Algal biorefinery process utilizes every component of algal biomass to produce multiple useful fuel products. In this technique, acid pretreatment of algal biomass hydrolyzes microalgal carbohydrates into fermentable sugars, makes lipids more extractable and a protein part accessible for additional products. In the present study, Chlorella sorkiniana produced higher quantity of biodiesel than Botryococcus braunii and biomass in Botryococcus braunii was higher than the Chlorella sorkiniana. Botryococcus braunii produces 11% more lipid content than Chlorella sorkiniana which was consistent with biomass content. The total sugar (oligomeric and monomeric) yield attained by Combined Algal Processing (CAP) was 89.9%. 29 g/L ethanol was produced during the fermentation in the Pretreated Algal Slurry. The recovery of lipids from CAP was reported as 84–89% after fermentation and ethanol removal. CAP preserves the PUFA (Poly-Unsaturated Fatty Acids) and utilizes these high-value PUFAs to further reduce the cost of biofuel production and replace petroleum products.

Keywords


Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A. and Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22; 477–485.
Bailey, R. B., Benitez, T. and Woodward, A. (1982). Saccharomyces cerevisiae mutants resistant to catabolite repression: use in cheese whey hydrolysate fermentation. Appl. Environ. Microbiol., 44; 631–639.
Balat, M. and Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy, 86; 2273–2282.
Cantrell, K. B., Ducey, T., Ro, K.S., Hunt, P. G. (2008). Livestock waste-to-bioenergy generation opportunities. Biores. Technol. 99; 7941–7953.
Carlson, K. D. and Chang, S. P. (1985). Chemical epoxidation of natural unsaturated epoxy seed oil
Pollution, 6(2): 363-376, Spring 2020
375
from Vernoniagalamensis and a look at epoxy oil markets. J. Am. Oil Chem. Soc., 62; 934–939.
Chen, L., Liu, T., Zhang, W., Chen, X., Wang, J. (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol., 111; 208–214.
Chisti, Y. (2008). Biodiesel from microalgae beats bio-ethanol. Trends in Biotechnology. 26; 26–31.
Ciesielski, P. N., Wang, W., Chen, X., Vinzant, T. B.and Tucker, M. P. (2014). Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 2: morphological and structural substrate analysis. Biotechnol. Biofuels, 7(1); 47.
Clarens, A. F., Nassau, H., Resurreccion, E. P., White, M. A. and Colosi, L. M. (2011). Biodiesel from algae. Environ. Sci. Technol, 45; 7554–7560.
Das, D. (2009). Advances in biological hydrogen production processes: An approach towards commercialization. Int. J. Hydrogen Energy. 34; 7349-7357.
Davis, R., Fishman, D., Frank, E. D. and Wigmosta, M. S. (2012). Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model. Golden, CO.
Davis, R., Kinchin, C., Markham, J., Tan, E. C. D., Laurens, L. M. L. (2014). Process design and economics for the conversion of algal biomass to biofuels : algal biomass fractionation to lipid-products, Process Design and Economics for the Conversion of Algal Biomass to Biofuels : Algal Biomass Fractionation to Lipid- and Carbohyd. Analytical Procedure (LAP). Golden, CO.
Demirbas, A. (2009), Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 50; 14–34.
Dong, T., Gao, D., Miao, C., Yu, X., Degan, C. and Garcia-Pérez, M. (2015). Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived biochar. Energy Convers. Manag., 105; 1389–1396.
Dong, T., Wang, J. M., Zheng, Y. and Chen, S. (2013). Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresour. Technol., 136; 8–15.
Dong, T., Yu, L., Gao, D., Yu, X., Miao, C. and Zheng, Y. (2015). Direct quantification of fatty acids in wet microalgal and yeast biomass via a rapid in situ fatty acid methyl ester derivatization approach. Appl. Microbiol. Biotechnol., 36; 111.
Dong, T., Yu, X., Miao, C., Rasco, B., Garcia-Perez, M., Sablani, S. S. (2015). Selective esterification to produce microalgal biodiesel and enrich polyunsaturated fatty acid using zeolite as a catalyst, RSC Adv. 5; 84894–84900.
Emily, W. (2009). Biotech’s green gold. Nature Biotechnol., 27; 15–18.
Hoffmann, M., Marxen, K., Schulz, R. and Vanselow, K. H. (2010). TFA and EPA productivities of Nannochloropsissalina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar. Drugs, 8; 25262545.
Khan, S. A., Singh, R. (2008). Algae: A novel source of renewable energy and carbon sequestration. Ren Energy, 2; 14-18.
Laurens, L. M. L., Nagle, N., Davis, R., Sweeney, N., Wychen, S. V., Lowell, A. and Pienkos, P. T. (2015). Acid-catalyzed algal biomass pretreatment for integrated lipid and carbohydrate-based biofuels production, Green Chem., 17; 1145-1158.
Laurens, L. M. L., Quinn, M., Wychen, S. V., Templeton, D. W. and Wolfrum, E. J. (2012). Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in-situ transesterification. Anal. Bioanal. Chem. 403; 167–178.
Laurens, L. M. L., Wychen, S. V., McAllister, J. P., Arrowsmith, S., Dempster, T. A.and McGowen, J. (2014). Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition. Anal. Biochem., 452;8695.
Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnol. Prog., 24; 815–820.
Lourenço, S. O., Barbarino, E., Lavín, P. L., Lanfer, M. U. M. and Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur. J. Phycol., 39; 17–32. Murphy, C. F. and Allen, D. T. (2011). Energy-water nexus for mass cultivation of algae. Environ. Sci. Technol., 45; 5861–5868.
Ramachandra, T. V., Mahapatra, D. M., Karthick, B. and Gordon, R. (2009). Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. & Engg. Chem. Res., 48; 87–88.
Schenk, P. M., Skye, R., Thomas, H., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O.
Singh, P., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
376
and Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. Bioenergy Res., 1; 20–43.
Shekiro, J., Kuhn, E. M., Selig, M. J., Nagle, N. J., Decker, S. R., Elander, R. T. (2012). Enzymatic conversion of xylan residues from dilute acid-pretreated corn stover. Appl. Biochem. Biotechnol. 168; 421–433.
Sialve, B., Bernet, N. and Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27; 409–416.
Singh, P., Bansal, S., Singh, P., Verma, R. and Jagadish, R. S. (2016). Algal Biofuel: A boon for society in future to solve Energy crisis. Int. Res. Adv., 3; 1-4.
Singh, P., Singh, P., Bansal, S., Srivastava, A., Tripathi, S. and Srivastava, V. (2016), Biodiesel from Jatropha: A step towards Green Alternative, Lenin Media Pvt. Ltd, India, 13-24.
Sluiter, B., Hames, R., Ruiz, C., Scarlata, J. and Sluiter, D. (2008). Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples Laboratory Analytical Procedure (LAP). Golden, CO.
Weiss, N. D., Nagle, N. J., Tucker, M. P., Elander, R. T. (2009). High xylose yields from dilute acid pretreatment of corn stover under process-relevant conditions. Appl. Biochem. Biotechnol., 155; 418–428. Wijffels, R. H. and Barbosa, M. J. (2010). An outlook on microalgal biofuels. Science, 329; 796–799.
Wychen, S. V. and Laurens, L. M. L. (2013). Determination of Total Solids and Ash in Algal Biomass Laboratory Analytical Procedure (LAP). Golden, CO.