Qualitative Analysis of Plastic Debris on Beaches of Brunei Darussalam

Document Type : Original Research Paper

Authors

1 Civil Engineering Program Area, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Jalan Tungku link, Gadong, BE1410, Brunei Darussalam Department of Chemical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Balochistan, Pakistan2Department of Chemical Engineering, Faculty of Engineering & Architecture, Balochistan

2 Civil Engineering Program Area, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Jalan Tungku link, Gadong, BE1410, Brunei Darussalam

3 Civil Engineering Program Area, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Jalan Tungku link, Gadong, BE1410, Brunei DarussalamDarussalam Department of Hydraulic Engineering, School of Civil Engineering and Transportation, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510641, China

4 Department of Civil Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, 53100, Kuala Lumpur, Malaysia

Abstract

Plastic debris is one of the major environmental concerns for the coastal area of Brunei Darussalam. It reduces the aesthetic appeals of the beaches in the country. The current study investigates marine debris on six different beaches of Brunei Darussalam along the South China Sea. Plastic was found the most abundant among whole debris by number (90.02%) and by weight (39.12%). It was classified by size (micro (<5 mm), meso (5-20 mm), macro (21-100), and mega (>100 mm)), colour (transparent, coloured, white and black). Fourier Transform Infrared Spectroscopy (FT-IR) was used to investigate the types of plastics and additives present in it. Statistical analysis using Minitab 17 and Kruskal-Wallis test was performed for comparison of data at different study sites. All major types of plastics were found in different forms with varying quantities from which toxic chemicals may leach out during degradation. The highest abundance by the number of plastic debris was found on Muara beach with a mean value 74.428 n/m2 ± 34.33 n/m2, while the lowest abundance was found on Lumut beach 53 n/m2 ± 20.9 n/m2. The study shows beaches used for recreational facilities are likely to have more debris as compared to other beaches.

Keywords


Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A. and Hassanaghaei, M. (2018). Microplastics in Different Tissues of Fish and Prawn from the Musa Estuary, Persian Gulf. Chemosphere., 205; 80–87.
Balestri, E., Menicagli, V., Vallerini, F. and Lardicci, C. (2017). Biodegradable Plastic Bags on the Seafloor: A Future Threat for Seagrass Meadows? Sci. Total Environ., 605–606; 755–63.
Ballance, A., Ryan, P. G. and Turpie, J. K. (2000). How Much Is a Clean Beach Worth? The Impact of Litter on Beach Users in the Cape Peninsula, South Africa. S. Afr. J. Sci., 96(5); 210–13.
Bang, D. Y., Kyung, M., Kim, M. J., Jung, B. Y., Cho, M. C., Choi, S. M., Kim, Y. W., Lim, S. K., Lim, D. S., Won, A. J., Kwack, S. J., Lee, Y., Kim, H. S. and Byung Mu Lee, B. M. (2012). Human Risk Assessment of Endocrine-Disrupting Chemicals Derived from Plastic Food Containers. Compr. Rev. Food Sci., 11(5); 453–70.
Barboza, L. G. A., Vethaak, A. D., Beatriz, R. B. O., Lavorante, A-K. L. and Lúcia, G. (2018). Marine Microplastic Debris: An Emerging Issue for Food Security, Food Safety and Human Health. Mar. Pollut. Bull., 133; 336–48.
Pollution, 6(3): 569-580, Summer 2020
579
Barnes, D. K. A., Francois, G., Richard C. Thompson, R. C. and Barlaz, M. (2009). Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc. Lond., B. Biol. Sci., 364(1526); 1985–98.
Battersby, R. V. and de Velde, K. V. (2011). Human Health Effects of Antimony – an Update. pp. 13 in 2nd International Workshop on Antimony in the Environment, edited by M. Filella and J. Majzlan. Jena: Bruker.
Bellas, J., Martínez-Armental, J., Martínez-Cámara, A., Victoria Besada, V. and Martínez-Gómez, C. (2016). Ingestion of Microplastics by Demersal Fish from the Spanish Atlantic and Mediterranean Coasts. Mar. Pollut. Bull., 109(1); 55–60.
Bessa, F., Barría, P., Neto, J. M., Frias, J. P. G. L., Otero, V., Sobral, P., & Marques, J. C. (2018). Occurrence of Microplastics in Commercial Fish from a Natural Estuarine Environment. Mar. Pollut. Bull., 128; 575–84.
Cooper, D. A. and Corcoran, P. L. (2010). Effects of Mechanical and Chemical Processes on the Degradation of Plastic Beach Debris on the Island of Kauai, Hawaii. Mar. Pollut. Bull., 60(5); 650–54.
Hardesty, B. D., Good, T. P. and Wilcox, C. (2015). Novel Methods, New Results and Science-Based Solutions to Tackle Marine Debris Impacts on Wildlife. Ocean Coast. Manage., 115; 4–9.
Harper, P. C. and Fowler, J. A. (1987). Plastic Pellets in New Zealand Storm-Killed Prions (Pachyptila Spp.). Notornis 34(1); 65–70.
Ikada, Y. and Tsuji, H. (2000). Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun., 21(3); 117–32.
Johns, L. E., Cooper, G. S., Galizia, A. and Meeker, J. D. (2015). Exposure Assessment Issues in Epidemiology Studies of Phthalates. Environ. Int., 85; 27–39.
Karami, A., Golieskardi, A., Ho, Y. B., Larat, V. and Salamatinia, B. (2017). Microplastics in Eviscerated Flesh and Excised Organs of Dried Fish. Sci. Rep. 7(1); 5473.
Kumar, A. A., Sivakumar, R., Reddy, Y. S. R., Raja, M. V., B., Nishanth, T. and Revanth, V. (2016). Preliminary Study on Marine Debris Pollution along Marina Beach, Chennai, India. Reg. Stud. Mar. Sci., 5; 35–40.
Lebreton, L. C. M., van der Zwet, J., Damsteeg, J-W., Slat, B., Andrady, A. and Julia Reisser, J. (2017). River Plastic Emissions to the World’s Oceans. Nat. Commun., 8(1); 15611.
Li, J., Zheng, B. H., He, Y., Zhou, Y., Chen, X., Ruan, S., Yang, Y., Dai, C. and Tang, L. (2018). Antimony Contamination, Consequences and Removal Techniques: A Review. Ecotoxicol. and Environmen.l Saf., 156; 125–134.
Li, W. C., Tse, H. F. and Fok. L. (2016). Plastic Waste in the Marine Environment: A Review of Sources, Occurrence and Effects. Sci. Total Environ., 566-567; 333–349.
Ma, Y., Liao, S., Li, Q., Guan, Q., Jia, P. and Zhou, Y. (2020). Physical and Chemical Modifications of Poly(Vinyl Chloride) Materials to Prevent Plasticizer Migration - Still on the Run. React. Funct.l Polym., 147; 104458.
Matsumoto, J., Hiroshi, Y. and Akira, Y. (2002). Developmental Increases in Rat Hepatic Microsomal UDP-Glucuronosyltransferase Activities toward Xenoestrogens and Decreases during Pregnancy. Environ. Health Perspect., 110(2); 193–96.
Mylchreest, E., Sar, M., Cattley, R. C. and Foster, P. M. D. (1999). Disruption of Androgen-Regulated Male Reproductive Development by Di(n-Butyl) Phthalate during Late Gestation in Rats Is Different from Flutamide. Toxicol. Appl. Pharm. 156(2); 81–95.
Newman, S., Watkins, E., Farmer, A., Brink, P. and Schweitzer, J. P. (2015) The Economics of Marine Litter, pp. 367–394. In: Bergmann, M., Gutow, L., Klages, M. (eds) Marine Anthropogenic Litter. Springer, Cham.
OSPAR. (2010). Guideline for Monitoring Marine Litter on the Beachs in the OSPAR Maritime Area. OSPAR Commission 1; 84.
Padrilah, S. N., Sabullah, M. K., Shukor, M. Y. A., Yasid, N. A., Shamaan, N. A. and Ahmad, S. A. (2018). Toxicity Effects of Fish Histopathology on Copper Accumulation. Pertanika J. Trop. Agric. Sci., 41(2); 519–40.
Perkins, S. (2015). Nearly Every Seabird May Be Eating Plastic by 2050. Science.
Poeta, G., Conti, L., Malavasi, M., Battisti, C. and Acosta, A. T. R. (2016). Beach Litter Occurrence in Sandy Littorals: The Potential Role of Urban Areas, Rivers and Beach Users in Central Italy. Estuar. Coast. and Shelf Sci., 181; 231–37.
Purohit, V. and Orzel, R. A. (1988). Polypropylene: A Literature Review of the Thermal Decomposition Products and Toxicity. J. Am. Coll. Toxicol., 7(2); 221–42.
Qaisrani, Z. N., Shams, S., Guo, Z., Ullah, A. and Kuaanan Techato., K. (2019). Physical Assessment
Qaisrani Z. N., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
580
of Marine Debris Along the Coast of Brunei Darussalam. J. Appl. Emerg. Sci.; 144–52.
Qaisrani, Z. N., Shams, S., Guo, Z., Reza, M. S. and Zaunuddin, Q. (2018). Quantitative Analysis of Marine Debris along the Sea Beaches of Brunei Darussalam. Paper presented in 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018), Banadar Seri Begawan.
Renzi, M., Guerranti, C. and Blašković. A. (2018). Microplastic Contents from Maricultured and Natural Mussels. Mar. Pollut. Bull., 131; 248–51.
Rowdhwal, S. S. S. and Chen. J. (2018). Toxic Effects of Di-2-Ethylhexyl Phthalate: An Overview. Biomed Res. Int., 2018(Figure 1); https://doi.org/10.1155/2018/1750368.
Sojáka, L., Kubineca, R., Jurdáková, H., Hájeková, E. and Bajus. M. (2006). Gc-Ms of Polyethylene and Polypropylene Thermal Cracking Products. Petroluem & Coal, 48(1); 1–14.
Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Björn, A., Rowland, S. J., Thompson, R. C., Galloway, T. S., Yamashita, R., Ochi, D. Watanuki, Y., Moore, C., Viet, P. H., Tana, T. S., Prudente, M., Boonyatumanond, R., Zakaria, M. P., Akkhavong, K., Ogata, Y. Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M. and Takada, H. (2009). Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biol. Sci., 364(1526); 2027–2045.
Thompson, R. C., Moore, C. J., vom Saal, F. S. and Swan, S. H. (2009). Plastics, the Environment and Human Health: Current Consensus and Future Trends. Philosophical Transactions of the Royal Society B: Biol. Sci., 364(1526); 2153–66.
Tiquio, M. G. J. P., Marmier, N. and Francour, P. (2017). Management Frameworks for Coastal and Marine Pollution in the European and South East Asian Regions. Ocean & Coast. Manage., 135; 65–78.
van Truong, N. and BeiPing, C. (2019). Plastic Marine Debris: Sources, Impacts and Management. Int. J. Environ. Stud., 76(6); 953–73.
Webb, H., Arnott, J., Crawford, R. and Ivanova. E. (2012). Plastic Degradation and Its Environmental Implications with Special Reference to Poly (Ethylene Terephthalate). Polymers, 5(1); 1–18.
Wilcox, C., Mallos, N. J., Leonard, G. H., Rodriguez, A. and Hardesty, B. D. (2016). Using Expert Elicitation to Estimate the Impacts of Plastic Pollution on Marine Wildlife. Mar. Pol., 65; 107–14.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. and Oda, K. (2016). A Bacterium That Degrades and Assimilates Poly (Ethylene Terephthalate). Sci., 351(6278); 1196–1199.
Zabaniotou, A. and Kassidi. E. (2003). Life Cycle Assessment Applied to Egg Packaging Made from Polystyrene and Recycled Paper. J. Clean. Prod., 11(5); 549–59.
Zhao, S., Zhu, L. and Li, D. (2015). Characterization of Small Plastic Debris on Tourism Beaches around the South China Sea. Reg. Stud. Mar. Sci., 1; 55–62.