Effect of Barley and Oat Plants on Phytoremediation of Petroleum Polluted Soils

Document Type : Original Research Paper


1 Department of Chemical Engineering, Faculty of Shahid Rajaee, Shiraz Branch, Technical and Vocational University, Shiraz, Iran

2 Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran

3 Chemical and Petroleum Engineering Department, School of Engineering, Shiraz University, Shiraz, Iran

4 Department of Chemical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran


Total Petroleum Hydrocarbons (TPHs) are one of the most dangerous
organic contaminants in the environment. Therefore, the remediation of the oilcontaminated
soil is necessary. The growth of barley and oat plant was studied in the
contaminated soils (4, 6, 8% TPHs) during 5 months. Plant height, wet and dry weight of
shoots and roots of both plants were measured. Results showed that oat and barley height,
wet and dry weight of shoots and roots decreased with increasing contamination levels.
Regardless of the plants species, the highest rate of TPH reduction was observed in soil
with 4% contamination and decreased with increasing the contamination level. The TPHs
concentration in the rhizosphere of barley and oat decreased by 29.66 and 24.04% at the
6% TPHs level and by 21.24 and 17.48% at the 8% TPHs level, respectively. Cultivation
of barley and oat plants significantly accelerated the biodegradation of hydrocarbons and
reduced TPHs content in soil as compared to unplanted soil.


Adam, G. and Duncan, H.J. (1999). Effect of diesel fuel on growth of selected plant species. Environ. Geochem. Health., 21(4); 353-357.
Adam, G. and Duncan, H. (2002). Influence of diesel fuel on seed germination. Environ. Pollut., 120(2);363-370.
Ali, N., Sorkhoh, N., Salamah, S., Eliyas, M. and Radwan, S. (2012). The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J. Environ. Manage., 93(1);113-120.
Aprill, W. and Sims, R.C. (1990). Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere., 20(1-2); 253-265.
Asiabadi, F.I., Mirbagheri, S.A., Najafi, P. and Moatar, F. (2014). Phytoremediation of petroleum-contaminated soils around Isfahan Oil Refinery (Iran) by sorghum and barley. Curr. World Environ., 9(1); 65.
Banks, M.K., Kulakow, P., Schwab, A.P., Chen, Z. and Rathbone, K. (2003). Degradation of crude oil in the rhizosphere of Sorghum bicolor. Int. J. Phytoremediation., 5(3); 225-234.
Baoune, H., Aparicio, J.D., Acuña, A., El Hadj-khelil, A.O., Sanchez, L., Polti, M.A. and Alvarez, A. (2019). Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotox. Environ. Safe., 184;109591.
Basumatary, B., Bordoloi, S., and Sarma, H.P. (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut., 223; 3373-3383
Chaineau, C.H., Morel, J.L. and Oudot, J. (1997). Phytotoxicity and plant uptake of fuel oil hydrocarbons. J. Environ. Qual., 26(6);1478-1483.
Cheema, S.A., Khan, M.I., Tang, X., Zhang, C., Shen, C., Malik, Z., Ali, S., Yang, J., Shen, K., Chen, X. and Chen, Y. (2009). Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca arundinacea). J. Hazard. Mater., 166(2-3); 1226-1231.
Child, R., Miller, C.D., Liang, Y., Sims, R.C. and Anderson, A.J. (2007). Pyrene mineralization by Mycobacterium sp. strain KMS in a barley rhizosphere. J. Environ. Qual., 36(5); 1260-1265.
Barati, M., et al.
Chupakhina G.N. and Maslennikov P.V. (2004) Plant adaptation to oil stress. Russ J. Ecol., 35; 290-295
Escalante-Espinosa E., Gallegos-Martinez M.E., Favela-Torres E. and Gutierrez-Rojas M. (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere, 59;405-413.
Huang, X.D., El-Alawi, Y., Penrose, D.M., Glick, B.R. and Greenberg, B.M. (2004). A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ. Pollut., 130(3); 465-476.
Hutchinson, S.L., Schwab, A.P. and Banks, M.K. (2001). Phytoremediation of aged petroleum sludge: effect of irrigation techniques and scheduling. J. Environ. Qual., 30(5); 1516-1522.
Kaimi, E., Mukaidani, T. and Tamaki, M. (2007). Screening of twelve plant species for phytoremediation of petroleum hydrocarbon-contaminated soil. Plant Prod. Sci., 10(2); 211-218.
Kathi, S. and Khan, A.B. (2011). Phytoremediation approaches to PAH contaminated soil. Indian J. Sci. Tech., 4(1); 56-63.
Kechavarzi, C., Pettersson, K., Leeds-Harrison, P., Ritchie, L. and Ledin, S. (2007). Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ. Pollut., 145(1); 68-74.
Khan S., Afzal M., Iqbal S., Khan Q.M. (2013) Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere., 90; 1317-1332.
Kuppusamy, S., Maddela, N.R., Megharaj, M. and Venkateswarlu, K. (2020). Approaches for Remediation of Sites Contaminated with Total Petroleum Hydrocarbons. In Total Petrol. Hydrocarbons;167-205
Lindsay, W.L. and Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Sci. Soc. Am. J., 42(3); 421-428.
Martin, B.C., George, S.J., Price, C.A., Ryan, M.H. and Tibbett, M. (2014). The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci. Total Environ., 472; 642-653.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut., 165(1-4); 195-209.
Merkl, N., Schultze-Kraft, R. and Infante, C. (2005). Phytoremediation in the tropics–influence of heavy crude oil on root morphological characteristics of graminoids. Environ. Pollut., 138(1); 86-91.
Minai-Tehrani, D. and Herfatmanesh, A. (2007). Biodegradation of aliphatic and aromatic fractions of heavy crude oil–contaminated soil: A pilot study. Biorem. J., 11(2); 71-76.
Nie, M., Zhang, X.D., Wang, J.Q., Jiang, L.F., Yang, J., Quan, Z.X., Cui, X.H., Fang, C.M. and Li, B. (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow River Deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol. Biochem., 41; 2535-2542.
Njoku, K.L., Akinola, M.O. and Taiwo, B.G. (2009). Effect of gasoline diesel fuel mixture on the germination and the growth of Vigna unguiculata (Cowpea). Afr. J. Environ. Sci. Technol., 3(12).
Okoh, A.I. and Trejo-Hernandez, M.R. (2006). Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. Afr. J. Biotech., 5(25).
Pajuelo, E., Rodríguez-Llorente, I.D., Lafuente, A. and Caviedes, M.Á. (2011). Legume–rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In Biomanagement of metal-contaminated soils; 95-123. Springer, Dordrecht.
Peng, S., Zhou, Q., Cai, Z. and Zhang, Z. (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J. Hazard. Mater., 168(2-3); 1490-1496.
Phillips, L.A., Greer, C.W., Farrell, R.E. and Germida, J.J. (2009). Field-scale assessment of weathered hydrocarbon degradation by mixed and single plant treatments. Appl. Soil Ecol., 42(1); 9-17.
Prematuri, R., Mardatin, N.F., Irdiastuti, R., Turjaman, M., Wagatsuma, T. and Tawaraya, K. (2019). Petroleum hydrocarbons degradation in contaminated soil using the plants of the Aster family. Environ. Sci. Pollut. Res.;1-8.
Rojo, F. (2009). Degradation of alkanes by bacteria. Environ. Microbiol., 11(10); 2477-2490.
Salanitro, J.P., Dorn, P.B., Huesemann, M.H., Moore, K.O., Rhodes, I.A., Rice Jackson, L.M., Vipond, T.E., Western, M.M., Wisniewski, H.L. (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol., 31;1769-1776.
Pollution, 6(4): 695-703, Autumn 2020
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Shahriari, M.H., Savaghebi-Firoozabadi, G., Azizi, M., Kalantari, F. and Minai-Tehrani, D. (2007). Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil. Res. J. Agric. Biol. Sci., 3(1);46-51.
Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005) Chromium toxicity in plants. Environ. Int., 31; 739-753.
Shirdam, R., Zand, A.D., Bidhendi, G.N., Mehrdadi, N. (2008) Phytore-mediation of hydrocarbon-contaminated soils with emphasis on the effect of petroleum hydrocarbons on the growth of plant species. Phytoprotection., 89;21-29.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (1996). Methods of soil analysis, Parts 2 and 3. Chemical analysis. Soil Sci Soc Am J., Madison, WI.
Susarla, S., Medina, V.F. and McCutcheon, S.C. (2002). Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng., 18(5); 647-658.
Wang, J., Zhang, Z., Su, Y., He, W., He, F. and Song, H. (2008). Phytoremediation of petroleum polluted soil. Petrol. Sci., 5(2);167-171.
Wenzel, W.W. (2009) Rhizosphere processes and management in plant- assisted bioremediation (phytoremediation) of soils. Plant Soil., 321;385-408.