Algal Indices as a Biomonitoring Tool to Assess Eutrophication in the Urban Ponds: a Case Study

Document Type : Original Research Paper


Department of Botany, Birla College, Kalyan, 421301 (Mumbai), India


Eutrophication of the urban water bodies is one the biggest challenge causing severe ecological and economic loss. Urban ponds are more prone to eutrophication due to their small size and polluted catchment areas. Biomonitoring using phytoplankton provides cost-effective estimation of the level of eutrophication. Ten urban ponds in different areas of the Mumbai city were chosen to investigate the phytoplankton community structure, and level of eutrophication. We assessed the 3 algal indices viz. Shannon-Wiener indices, Palmer and Nygard's (Myxophycean and diatom) indices. Linear relationship of these indices was tested against Carlson trophic state indices in order to assess the effectiveness of these indices to measure the degree of eutrophication in urban lakes. All ten lakes were found to be eutrophic, of which two were very low eutrophic (TSI – 53.74-53.95), four were low-mid eutrophic (TSI – 55.18 – 57.5), and four lakes were mid eutrophic (TSI 61.4 – 62.2). Shannon-Wiener indices (r= -0.73) and Myxophycean indices (r= 0.77) showed strong correlation with TSI whereas Diatom indices (r= -0.12) and Palmer’s Algal Pollution Indices (r= - 0.47) showed weak correlation with TSI. Thus study found that Shannon-Wiener indices and Myxophycean indices are reliable and cost effective means to assess the eutrophication of urban ponds in Mumbai.


Ajayan, A. P. and Ajit Kumar, K. G. (2017). Phytoplankton as biomonitors: A study of Museum Lake in Government Botanical Garden and Museum, Thiruvananthapuram, Kerala India. Lake Reserv. Manage., 22(4); 403-415. DOI:10.1111/lre.12199
Alam, M. Z., Carpenter-Boggs, L., Rahman, A., Haque, M. M., Miah, M. R. U., Moniruz, M. and Abdullah, H. M. (2017). Water quality and resident perceptions of declining ecosystem services at Shitalakka wetland in Narayanganj city. Sustain. Water Qual. and Ecolo., 9; 53-66. DOI:10.1016/j.swaqe.2017.03.002
Allende, L., Fontanarrosa, M. S., Murno, A. and Sinistro, R. (2019). Phytoplankton functional group classifications as a tool for biomonitoring shallow lakes: a case study. Knowl. Manag. Aquat. Ecol., 420; 5-18. DOI: 10.1051/kmae/2018044
American Public Health Association (APHA) (2005). Standard methods for the examination of water and wastewater. Washington DC., 2670 pp.
Arab, S., Hamil, S., Rezzaz, M. A., Chaffai, A. and Arab, A. (2019). Seasonal variation of water quality and phytoplankton dynamics and diversity in the surface water of Boukourdane Lake, Algeria. Arab. J. Geosci., 12; 29. DOI: 10.1007/s12517-018-4164-4.
Brill, G., Anderson, P. and O’Farrell, P. (2017). Methodological and empirical considerations when assessing freshwater ecosystem service provision in a developing city context: Making the best of what we have. Ecol. Indic., 76; 256-274. DOI: 10.1016/j.ecolind.2017.01.006
Chakraborty, T., Mukhopadhyay, A. and Pal, R.(2010). Micro algal diversity of Kolkata, West Bengal, India. Ind. Hydrobio., 12(2); 204-224.
Çiçek, N. L. and Yamuç, F., (2017). Using epilithic algae assemblages to assess water quality in Lake Kovada and Kovada Channel (Turkey), and in relation to environmental factors. Turk. J. Fish. Aquat. Sc., 17(4); 701-711. DOI: 10.4194/1303-2712-v17_4_06
Cupertino, A., Gücker, B., VonRückert, G. and Figueredo, C. C. (2019). Phytoplankton assemblage composition as an environmental indicator in routine lentic monitoring: Taxonomic versus functional groups. Ecol. Indic., 101; 522-532. DOI: 10.1016/j.ecolind.2019.01.054
Eaton, A. D., Lenore, S. C., Eugene, W. R., Greenberg, A. E. and Franson, M. A. H. (2005). “APHA: Standard Methods for the Examination of Water and Wastewater.” Centennial Edition., APHA, AWWA, WEF, Washington, DC.
Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., da Silva, M. C. and Lancelot, C. (2011). Overview of eutrophication indicators to assess Environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci., 93; 117-131. DOI: 10.1016/j.ecss.2011.03.014
Ghaderpoori, M. (2018). Heavy metals analysis and quality assessment in drinking water–Khorramabad city, Iran. Data brief., 16; 685-692.
Glibert, P. M., Heil, C. A., Wilkerson, F. P. and Dugdale, R. C. (2018). Nutrients and harmful algal blooms: dynamic kinetics and flexible nutrition. In Global ecology and oceanography of harmful algal blooms. Springer, Cham. pp. 93-112
Haase, D. (2013). Shrinking cities, biodiversity and ecosystem services. In Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht. pp. 253-274.
Hill, M. J., Biggs, J., Thornhill, I., Briers, R. A., Gledhill, D. G., White, J. C. and Hassall, C. (2017). Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob. Change Biol., 23(3); 986-999. DOI: 10.1111/gcb.13401
Hoekstra, A. Y. (2014). Water scarcity: challenges to business. Nat. Clim. Change., 4(5); 318. DOI: 10.1038/nclimate2214.
Jeffrey, S.W., Mantoura, R.F.C. and Wright, S.W. (1997). Phytoplankton pigments in oceanography: guidelines to modern methods. Monographs on Oceanographic Methodology, 10 UNESCO, Paris, France. 661 pp
Kar, S., Das, P., Das, U., Bimola, M., Kar, D. and Aditya, G. (2018). Correspondence of zooplankton assemblage and water quality in wetlands of Cachar, Assam, India: Implications for environmental management. Limn. Rev., 18; 9-19. DOI: 10.2478 /limre-2018-0002
Kohlmann, B., Arroyo, A., Macchi, P. A. and Palma, R. (2018). Biodiversity and biomonitoring indiceses. integrated analytical Approaches for pesticide management., Academic Press. pp. 83-106.
McInnes, R. J. and Everard, M. (2017). Rapid assessment of wetland ecosystem services (RAWES): an example from Colombo, Sri Lanka. Ecosyst. Serv., 25; 89-105. DOI:10.1016/j.ecoser.2017.03.024
Murphy, A., Enqvist, J.P. and Tengö, M. (2019). Place-making to transform urban social–ecological systems: insights from the stewardship of urban lakes in Bangalore, India. Sustain. Sci 14(3); 607-623.
Oliver, S., Corburn, J. and Ribeiro, H. (2019).
Pollution, 6(4): 751-757, Autumn 2020
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Challenges Regarding Water Quality of Eutrophic Reservoirs in Urban Landscapes: A Mapping Literature Review. Int. J. Environ. Res. Public Health., 16(1); 40-54. DOI: 10.3390/ijerph16010040
Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. J Phyco., 5(1); 78-82.
Peretyatko, A., Teissier, S., De Backer, S. and Triest, L. (2009). Restoration potential of biomanipulation for eutrophic peri-urban ponds: the role of zooplankton size and submerged macrophyte cover. Pond Conservation in Europe., 281-291. pp
Pham, T. (2020). Using Benthic Diatoms as a Bioindicator to Assess Rural-urban River Conditions in Tropical Area: A Case Study in the Sai Gon River, Vietnam. Poll., 6(2); 387-398. DOI: 10.22059/poll.2020.292996.716
Ranjit, D. (2015). An assessment of the downstream river ecosystem prior to the construction of lower subansiri hydroelectric power project of northeast India. PhD Thesis submitted to Gauhati University pp.79-80.
Ray, J. G., Santhakumaran, P. and Kookal, S. (2020). Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environ. Dev. Sustain.,1-32. DOI: 10.1007/s10668-019-00579-y
Sakset, A. and Chankaew, W. (2013). Phytoplankton as a Bio-indicator of Water Quality in the Freshwater Fishing Area of Pak Phanang River Basin (Southern Thailand). Chiang. Mai. J. Sci., 40; 344–355
Salem, Z., Ghobara, M. and El Nahrawy, A. A. (2017). Spatio-temporal evaluation of the surface water quality in the middle Nile Delta using Palmer’s algal pollution indices. Egypt. j. Basic appl. Sci., 4(3); 219-226. DOI: 10.1016/j.ejbas.2017.05.003
Sansare, D. A. and Mhaske, S. Y. (2020). Natural hazard assessment and mapping using remote sensing and QGIS tools for Mumbai city, India. Nat. Hazards., 1-20. DOI: 10.1007/s11069-019-03852-5
Shannon, C. E. and Wiener, W. (1949). The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press
Singh, A. N., Shrivastava, R., Mohan, D. and Kumar, P. (2018). Assessment of spatial and temporal variations in water quality dynamics of river Ganga in Varanasi. Poll., 4(2); 239-250. DOI: 10.22059/poll.2017.240626.310
Spellerberg, I. F. and Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the Shannon Wiener’ Indices. Global Ecol. Biogeogr., 12(3), 177-179. DOI: 10.1046/ j.1466-822X.2003.00015.x
Srinivasan, V., Seto, K. C., Emerson, R. and Gorelick, S. M. (2013). The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai, India. Glob., Environ. Change., 23(1); 229-239.
Tang, T., Niu, S. Q. and Dudgeon, D. (2013). Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia., 703(1); 225-237. DOI: 10.1007/s10750-012-1362-z
Usharani, K. and Keerthi, K. V. (2020). Nitrate Bioremoval by Phytotechnology using Utricularia aurea Collected from Eutrophic Lake of Theerthamkara, Kerala, India. Poll., 6(1);149-157. DOI: 10.22059/poll.2019.288505.676
Wu, N., Dong, X., Liu, Y., Wang, C., Baattrup-Pedersen, A. and Riis, T. (2017). Using river microalgae as indicators for freshwater biomonitoring: Review of published research and future directions. Ecol. Indic., 81; 124-131. DOI: 10.1016/j.ecolind.2017.05.066.
Yin, K. (2002). Monsoonal influence on seasonal variations in nutrients and phytoplankton biomass in coastal waters of Hong Kong in the vicinity of the Pearl River estuary. Mar. Ecol. Prog., 245; 111–122. DOI: 10.3354/meps245111
Zębek, E. and Napiórkowska-Krzebietke, A. (2016). Response of phytoplankton to protective-restoration treatments enhancing water quality in a shallow urban lake. Environ. Monit. Assess., 188(11); 623. DOI: 10.1007/s10661-016-5633-4.