Assessment of Annual Effective Dose Associated with Radon in Drinking Water from Gold and Bismuth Mining area of Edu, Kwara, North-central Nigeria

Document Type : Original Research Paper


1 Department of Physics, University of Ilorin, Ilorin, Nigeria

2 Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-ife, Nigeria

3 BS Geophysical and Consultancy Limited, Nigeria


The aim of this paper is to assess the radon concentration of surface and ground waters around Bismuth mining site located in Edu, Kwara State, Nigeria, in order to ascertain its radiological risk. Seventeen (17) water samples were collected and analyzed for radon concentration using a calibrated Rad7-Active Electronic Detector Durridge. The Radon concentration for surface water ranged from 16.23±3.45 Bq/l to 24.71±4.51 Bq/l with a mean of 19.14±3.98 Bq/l while that of ground water ranged from 21.59±3.29 to 27.93±5.74 Bq/l with a mean of 24.16±4.21 Bq/l. The concentration results were used to estimate the annual effective doses. The mean total annual effective dose obtained by summing the dose due to inhalation and ingestion for surface water samples were 187.97 μSvy-1, 257.84 μSvy-1 and 292.77 μSvy-1 for adult, children and infants respectively. Also, the mean effective doses for ground water samples were of 237.25 μSvy-1, 325.44 μSvy-1 and 369.53 μSvy-1 for adult, children and infants respectively. Both the radon concentration and the effective dose due to its inhalation and ingestion were higher than the recommended limit of 11.1 Bq/l and 100 μSvy-1 respectively for all samples. Therefore, consumption of the water in this area poses serious health risk as the water is not safe for all age groups considered. Therefore, it is advised that the water from both sources be treated before consumption.


Adagunodo, T. A., George, A. I., Ojoawo, I. A., Ojesanmi, K. and Ravisankar, R. (2018). Radioactivity and radiological hazards from a kaolin mining field in Ifonyintedo, Nigeria. MethodsX, 5, 362–374. doi:10.1016/j.mex.2018.04.009
Ademola, A. K., Bello, A. K. and Adejumobi, A. C. (2014). Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. Journal of Radiation Research and Applied Sciences, 7(3), 249-255.
Akinnagbe, D. M., Orosun, M. M., Orosun, R. O., Osanyinlusi O., Yusuk, K. A., Akinyose F.C., Olaniyan T. A. Ige, S. O. (2018): Assessment of radon Concentration of ground Water in IjeroEkiti, Manila Journal of Science, 11, 32-41.
Aliyu, A. S., Ibrahim, U., Akpa, C. T., Garba, N. N. and Ramli, A. T. (2015). Health and ecological hazards due to natural radioactivity in soil from mining areas of Nasarawa State, Nigeria. Isotopes in Environmental and Health Studies, 51(3), 448–468. doi:10.1080/10256016.2015.1026339.
Pollution, 7(1): 231-240, Winter 2021
Asadi, M. A. A., Rahimi, M. and Jabbari, K. L. (2016). The effect of geological structure on radon concentration dissolved in groundwater in nearby Anar fault based on a statistical analysis. Journal of Radioanalytical and Nuclear Chemistry, 308, 801-807.
Aunan, J. R., William, C. C. and Kjetil, S. (2017). The biology of Aging and Cancer: A Brief Overview of Shared and Divergent Molecular Hallmarks. Aging and Disease, 8(5), 628-642.
Bello, S., Nasiru, R., Garba, N.N. and Adeyemo, D.J. (2020). Annual effective dose associated with radon, gross alpha and gross beta radioactivity in drinking water from gold mining areas of Shanono and Bagwai, Kano State, Nigeria. Microchemical Journal, 154(2020), 104551.
Darabi, F.Z., Rahimi, M., Malakootian, M. and Javid, N. (2020). Studying radon concentration in drinking water resources in Zarand city (Iran) and its villages. Journal of Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-020-07349-5
Ezzulddin, S. K. and Mansour, H. H. (2017). Assessment of Radon Exposure in Erbil Drinking Water Resources, ZANCO Journal of Pure and Applied Sciences. The official scientific journal of Salahaddin University-Erbil/ZJPAS, 29(4), 184-194.
Fakhri, Y., Kargosha, M., Langarizadeh, G., Zandsalimi, Y., Rasouli, L.A., Moradi, M., Moradi, B. and Mirzaei, M. (2016). Effective dose Radon 222 of the tap water in children and adults people; Minab city, Iran. Glob. J. Health Sci, 8(4), 234–243.
Fakhri, Y., Oliveri, G.C., Ferrante, M., Bay, A., Avazpour, M., Moradi, B., Zandsalimi, Y., Rasouli, L.A., Langarizadeh, G. and Keramati, H. (2016). Assessment of concentration of Radon 222 and effective dose; Bandar Abbas city (Iran) citizens exposed through drinking tap water. Int. J. Pharm Techn, 8(1), 10782–10793.
Garba, N.N., Rabi'u, N., Dewu B.B.M. (2012). Preliminary studies on 222Rn concentration in ground water from Zaria, Nigeria. J. Phys. Sci, 23(1), 57–64. Ghosh, P.C. and Sheikh, I. A. (1976). Diffusion of radon through inactive rock section. Ind. J. Pure and Appl. Phys.14, 666 - 669.
Hopke, P.K., Borak, T. B., Doull, J., Cleaver, J. E., Eckerman, K. F., Gundersen, L. C. S., Harley, N. H., Hess, C. T., Kinner, N.E., Kopecky, K.J., Mckone, T.E., Sextro, R.G. and Simon, S.L. (2000). Health Risks Due to Radon in Drinking Water, American Chemical Society. Environmental Science and Technology, 34(6), 921−926.
ICRP (2010). International Commission on Radiological Protection: Lung Cancer Risk from Radon and Progeny and Statement on Radon. Ann. 40(1).
ISO (2013). Water Quality - Radon-222- Part 1-3, International Organization for Standardization, Geneva, 13164 - 3. Jarzemba, T.E., Blue, J., Mervis, J. and Halcomb, D. (1989). Diffusion of radon gas into the soil cavities. Trans. Am. Nucl. Soc, 60, 87-88.
Keramati, H., Ghorbani, R., Fakhri, Y., Mousavi Khaneghah, A., Conti, G. O., Ferrante, M. and Moradi, B. (2018). Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation). Food and Chemical Toxicology, 115, 460 – 469. doi:10.1016/j.fct.2018.03.042
Morris, R.D. (1995). Drinking Water and Cancer, Environ Health Perspect, 103(suppl 8), 225-231.
Orosun, M. M., Alabi, A. B., Olawepo, A. O., Orosun, R. O., Lawal, T. O. and Ige, S. O. (2018). Radiological Safety of Water from Hadejia River. IOP Conf. Series: Earth and Environmental Science, 173(2018), 012036. doi:10.1088/1755-1315/173/1/012036.
Orosun, M. M., Lawal, T. O. and Akinyose, F. C. (2016a). Natural radionuclide concentrations and radiological impact assessment of soil and water in Tanke-Ilorin, Nigeria. Zimbabwe Journal of Science and Technology, 11, 158–172.
Orosun, M. M., Oniku, A. S., Adie, P., Orosun, O. R., Salawu, N. B. and Louis, H. (2020d). Magnetic susceptibility measurement and heavy metal pollution at an automobile station in Ilorin, North-Central Nigeria, Environ. Res. Commun, 2(2020), 015001.
Orosun, M. M., Oyewumi, K. J., Usikalu, M. R. and Onumejor, C. A. (2020b). Dataset on radioactivity measurement of Beryllium mining field in Ifelodun and Gold mining field in Moro, Kwara State, North-central Nigeria. Data in Brief, 31(2020), 105888. doi:
Orosun, M. M., Tchokossa, P., Lawal, T. O., Bello, S. O., Ige, S. O. and Nwankwo, L. I. (2016b). Assessment of heavy metal pollution in drinking water due to mining and smelting activities in Ajaokuta. Nigerian Journal of Technological Development, 13, 30-38. doi:
Orosun, M. M., Usikalu, M. R., Oyewumi, K. J. and Achuka, J. A. (2020a). Radioactivity levels and transfer factor for granite mining field in Asa, North-central Nigeria. Heliyon, 6(6), e04240.
Ajibola, T.B., et al.
Pollution is licensed under a "Creative Commons Attribution 4.0 International (CC-BY 4.0)"
Orosun, M. M., Usikalu, M. R., Oyewumi, K. J. and Adagunodo, A. T. (2019). Natural Radionuclides and Radiological Risk Assessment of Granite Mining Field in Asa, North-central Nigeria. MethodsX, 6, 2504-2514. doi:
Orosun, M. M., Usikalu, M.R. and Kayode, K. J. (2020c). Radiological hazards assessment of laterite mining field in Ilorin, North-central Nigeria. International Journal of Radiation Research, 18(4), 895-906.
Pereira, A.J.S.C., Pereira, M.D., Neves, L.J.P.F., Azevedo, J.M.M. and Campos, A.B.A. (2015). Evaluation of groundwater quality based on radiological and hydrochemical data from two uraniferous regions of western Iberia: Nisa (Portugal) and Ciudad Rodrigo (Spain). Environ. Earth Sci. 73, 2717–2731.
Pirsaheb, M., Sharafi, K., Hemati, L., Fazlzadehdavil, M. (2015). Radon measurement in drinking water and assessment of average annual effective dose in the west region of Iran. Fresenius Environ. Bull, 24(10B), 3515–3519.
Przylibski, T.A., Gorecka, J., Kula, A., Fijałkowska-Lichwa, L., Zagozdzon, K., Zagozdzon, P., Mi_sta, W. and Nowakowski, R. (2014). 222Rn and 226Ra activity concentrations in groundwaters of southern Poland: new data and selected genetic relations. J. Radioanal. Nucl. Chem. 301, 757–764.
Ruano-Ravina, A., Kelsey, K.T.,Fernández-Villar, A.,Barros-Dio, J.M., (2017). Action levels for indoor radon: different risks for the same lung carcinogen? Eur. Respir. J. 50, 170169.
UNSCEAR (2000). United Nations Scientific Committee on the Effects of Atomic Radiations: Sources and effects of ionizing radiation. The General Assembly with scientific annexes, United Nation, New York. Available online at 80076.
USEPA (1991). United States Environmental Protection Agency: National radon proficiency program handbook. Appendix A: Radon proficiency program measurement method definitions. U.S. Environmental Protection Agency Office of Radiation and Indoor Air (6604J) 401 M Street, S.W. Washington, DC 20460, pp. 70–74
Usikalu, M. R., Fuwape, I. A., Jatto, S. S., Awe, O. F., Rabiu, A. B and Achuka, J. A. (2017). Assessment of radiological parameters of soil in Kogi State, Nigeria. Environmental Forensics, 18(1), 1-14.
Usikalu, M.R., Olatinwo, V., Akpochafor, M., Aweda, M.A., Giannini, G., & Massimo, V. (2017). Measurement of radon concentration in selected houses in Ibadan, Nigeria. International Conference on Space Science and Communication. IOP Conf. Series: Journal of Physics: Conf. Series, 852, 012028.
WHO (2004). World Health Organization Guidelines for Drinking Water Quality. Health Criteria and Other Supporting Information. World Health Organization, Geneva 3rd (1).
WHO (2018). World Health Organization Latest global Cancer data: Cancer burdens rises to 18.1 million new cases and 9.8 million cancer deaths in 2018, World Health Organization, Geneva, 12, September 2018.