Al-Furaiji, M., Kadhom, M., Kalash, K., Waisi, B. and Albayati, N. (2020). Preparation of thin-film composite membranes supported with electrospun nanofibers for desalination by forward osmosis. Drink. Water Eng. Sci. 13, 51–57. https://doi.org/10.5194/dwes-13-51-2020
                                                                                                                Al-Furaiji, M.H.O., Arena, J.T., Chowdhury, M., Benes, N., Nijmeijer, A. and McCutcheon, J.R. (2018). Use of forward osmosis in treatment of hyper-saline water. Desalin. Water Treat. 133, 1–9. https://doi.org/10.5004/dwt.2018.22851
                                                                                                                Al-Rubaie, M.S., Dixon, M.A. and Abbas, T.R. (2015). Use of flocculated magnetic separation technology to treat Iraqi oilfield co-produced water for injection purpose. Desalin. Water Treat. 53, 2086–2091. https://doi.org/10.1080/19443994.2013.860400
                                                                                                                Alalwan, H.A. and Alminshid, A.H. (2021). CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Sci. Total Environ. 788, 147850. https://doi.org/10.1016/j.scitotenv.2021.147850
                                                                                                                Alalwan, H.A., Augustine, L.J., Hudson, B.G., Abeysinghe, J.P., Gillan, E.G., Mason, S.E., Grassian, V.H. and Cwiertny, D.M. (2021). Linking Solid-State Reduction Mechanisms to Size-Dependent Reactivity of Metal Oxide Oxygen Carriers for Chemical Looping Combustion. ACS Appl. Energy Mater. 4, 1163–1172. https://doi.org/10.1021/acsaem.0c02029
                                                                                                                Alminshid, A.H., Abbas, M.N., Alalwan, H.A., Sultan, A.J. and Kadhom, M.A. (2021). Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Mol. Catal. 501, 111333. https://doi.org/10.1016/j.mcat.2020.111333
                                                                                                                Avci, A.H., Tufa, R.A., Fontananova, E., Di Profio, G. and Curcio, E. (2018). Reverse Electrodialysis for energy production from natural river water and seawater. Energy 165, 512–521. https://doi.org/10.1016/j.energy.2018.09.111
                                                                                                                Bodner, E.J., Saakes, M., Sleutels, T., Buisman, C.J.N. and Hamelers, H.V.M. (2019). The RED Fouling Monitor: A novel tool for fouling analysis. J. Memb. Sci. 570–571, 294–302. https://doi.org/10.1016/j.memsci.2018.10.059
                                                                                                                Castaño, S.V. (2016). Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis Energy generation from salinity gradients through Reverse Electrodialysis and Capacitive Reverse Electrodialysis 103.
                                                                                                                Coleman Gilstrap, M. (2013). Renewable electricity generation from salinity gradients using reverse electrodialysis.
                                                                                                                D’Angelo, A., Tedesco, M., Cipollina, A., Galia, A., Micale, G. and Scialdone, O. (2017). Reverse electrodialysis performed at pilot plant scale: Evaluation of redox processes and simultaneous generation of electric energy and treatment of wastewater. Water Res. 125, 123–131. https://doi.org/10.1016/j.watres.2017.08.008
                                                                                                                Hassan, Q.H., Shaker Abdul Ridha, G., Hafedh, K.A.H. and Alalwan, H.A. (2021). The impact of Methanol-Diesel compound on the performance of a Four-Stroke CI engine. Mater. Today Proc. 42, 1993–1999. https://doi.org/10.1016/j.matpr.2020.12.247
                                                                                                                Hu, J., Xu, S., Wu, X., Wu, D., Jin, D., Wang, P. and Leng, Q. (2018). Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation—reverse electrodialysis power generation system. Desalination 443, 172–183. https://doi.org/10.1016/j.desal.2018.06.001
                                                                                                                Huang, Y., Mei, Y., Xiong, S., Tan, S.C., Tang, C.Y. and Hui, S.Y. (2018). Reverse Electrodialysis Energy Harvesting System Using High-Gain Step-Up DC/DC Converter. IEEE Trans. Sustain. Energy 9, 1578–1587. https://doi.org/10.1109/TSTE.2018.2797320
                                                                                                                Kim, H.-K., Lee, M.-S., Lee, S.-Y., Choi, Y.-W., Jeong, N.-J. and Kim, C.-S. (2015). High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. J. Mater. Chem. A 3, 16302–16306. https://doi.org/10.1039/C5TA03571F
                                                                                                                Loza, S.A., Korzhov, A.N., Loza, N. V. and Romanyuk, N.A. (2020). Energy generation by reverse electrodialysis. IOP Conf. Ser. Mater. Sci. Eng. 791, 012057. https://doi.org/10.1088/1757-899X/791/1/012057
                                                                                                                Mei, Y. and Tang, C.Y. (2018). Recent developments and future perspectives of reverse electrodialysis technology: A review. Desalination 425, 156–174. https://doi.org/10.1016/j.desal.2017.10.021
                                                                                                                Tedesco, M., Cipollina, A., Tamburini, A., van Baak, W. and Micale, G. (2012). Modelling the Reverse ElectroDialysis process with seawater and concentrated brines. Desalin. Water Treat. 49, 404–424. https://doi.org/10.1080/19443994.2012.699355
                                                                                                                Tedesco, M., Hamelers, H.V.M. and Biesheuvel, P.M. (2018). Nernst-Planck transport theory for (reverse) electrodialysis: III. Optimal membrane thickness for enhanced process performance. J. Memb. Sci. 565, 480–487. https://doi.org/10.1016/j.memsci.2018.07.090
                                                                                                                Tedesco, M., Mazzola, P., Tamburini, A., Micale, G., Bogle, I.D.L., Papapetrou, M. and Cipollina, A. (2015). Analysis and simulation of scale-up potentials in reverse electrodialysis. Desalin. Water Treat. 55, 3391–3403. https://doi.org/10.1080/19443994.2014.947781
                                                                                                                Tufa, R.A., Pawlowski, S., Veerman, J., Bouzek, K., Fontananova, E., di Profio, G., Velizarov, S., Goulão Crespo, J., Nijmeijer, K. and Curcio, E. (2018). Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 225, 290–331. https://doi.org/10.1016/j.apenergy.2018.04.111
                                                                                                                Veerman, J., Saakes, M., Metz, S.J. and Harmsen, G.J. (2010). Reverse electrodialysis: evaluation of suitable electrode systems. J. Appl. Electrochem. 40, 1461–1474. https://doi.org/10.1007/s10800-010-0124-8
                                                                                                                Vermaas, D.A., Guler, E., Saakes, M. and Nijmeijer, K. (2012). Theoretical power density from salinity gradients using reverse electrodialysis. Energy Procedia 20, 170–184. https://doi.org/10.1016/j.egypro.2012.03.018