Improving Phytoremediation Efficiency of Copper-spiked Calcareous Soils by Humic Acid Applications

Document Type : Original Research Paper


1 Research and Technology Institute of Plant Production, Shahid Bahonar University, Kerman, Iran

2 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.


In current study, the enhanced efficiency of copper (Cu) phytoremediation potential of Calendula officinalis L. was investigated in a Cu-spiked calcareous soil, using foliar and soil application of humic acid. For this purpose, in a greenhouse experiment, seedlings of C. officinalis were transferred to Cu-spiked soils (0, 250 and 500 mg/kg) and treated separately with soil (soil drench) and foliar (spraying plant leaves) humic acid applications at different levels (0, 10, 20 μM). The humic acid treatments were applied 2 weeks after transferring plant, and eventually the various biochemical-physiological traits and phytoremediation indices of Cu in C. officinalis were measured at (specific) time points. According to the results, C. officinalis grew normally without any toxicity signs in Cu-spiked soils, however with increasing the Cu levels, the dry weight biomass decreased and antioxidant enzymes activities increased. Both foliar and soil humic acid application in Cu-spiked soils increased dry weight biomass, photosynthetic pigment contents, Cu concentration, and bioconcentration factor (BCF). Furthermore, the application of this organic substance, obviously moderated the Cu stress since the antioxidant enzymes activities reduced compared to the control. Based on the results, the obtained translocation factor (TF) and BCF values of Cu, which were >1, indicated that this plant is a Cu-hyperaccumulator, which could extract Cu via phytoextraction mechanism. Generally, the results of this study showed that, among the humic acid treatments, application of 20 μM (especially soil drench application) had the best effect on increasing Cu phytoremediation efficiency in the studied soil and it recommended to enhance the efficiency of Cu phytoremediation in calcareous soils.


Agnello, A. C., Huguenot, D., Van Hullebusch, E. D. and Esposito, G. (2014). Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit. Rev. Environ. Sci. Technol., 44(22); 2531-2576.
Aly, S. S. and Soliman, S. M. (1998). Impact of some organic acids on correcting iron chlorosis in two soybean genotypes grown in calcareous soil. Nutr. Cycling Agroecosyst., 51(3); 185-191.
Angin, I., Turan, M., Ketterings, Q. M. and Cakici, A. (2008). Humic acid addition enhances B and Pb phytoextraction by vetiver grass (Vetiveria zizanioides (L.) Nash). Water Air Soil Poll., 188(1); 335-343.
Asli, S. and Neumann, P. M. (2010). Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil., 336(1); 313-322.
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q. and Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresour. Technol., 84(1); 7-14.
Bai, X., Liu, H., Han, B., Su, X. and Qin, F. (2010). Experimental study on ornamental plants remediation of heavy metals in sewage sludge. Environ. Sci. Technol., 33(10); 39-105.
Baniasadi, F., Saffari, V. R. and Moud, A. A. M. (2018). Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Sci. Hortic., 234; 312-317.
Blokhina, O., Virolainen, E. and Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot., 91(2); 179-194.
Caetano, A. L., Marques, C. R., Gonçalves, F., Da Silva, E. F. and Pereira, R. (2016). Copper toxicity in a natural reference soil: ecotoxicological data for the derivation of preliminary soil screening values. Ecotoxicology, 25(1); 163-177.
Caverzan, A., Casassola, A. and Brammer, S. P. (2016). Antioxidant responses of wheat plants under stress.  Genet. Mol. Biol., 39(1); 1-6.
Chen, B. and Zhu, Y. G. (2006). Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked, contaminated soil (7 pp). J. Soils Sediments., 6(4); 236-242.
Demiral, T. and Türkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot., 53(3); 247-257.
Deo, B. and Nayak, P. K. (2011). Study of copper phytotoxicity on in vitro culture of Musa acuminata cv.'Bantala'. J. Agric. Biotech., 3(8); 136.
Dursun, A., Güvenç, I. and Turan, M. (2002). Effects of different levels of humic acid on seedling growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 55(2); 81-88.
Ehsan, S., Ali, S., Noureen, S., Mahmood, K., Farid, M., Ishaque, W. and Rizwan, M. (2014). Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf., 106; 164-172.
Elmongy, M. S., Zhou, H., Cao, Y., Liu, B. and Xia, Y. (2018). The effect of humic acid on endogenous hormone levels and antioxidant enzyme activity during in vitro rooting of evergreen azalea. Sci. Hortic., 227; 234-243.
Etim, E. E. (2012). Phytoremediation and its mechanisms: a review. Int. J. Environ. Bioenergy, 2(3), 120-136.
Faust, M. B. and Christians, N. E. (2000). Copper reduces shoot growth and root development of creeping bentgrass. Crop Sci., 40(2); 498-502.
Ghaderian, S. M. and Ravandi, A. A. G. (2012). Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran. J. Geochem. Explor., 123; 25-32.
Hristozkova, M., Geneva, M., Stancheva, I., Boychinova, M. and Djonova, E. (2016). Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl. Soil Ecol., 101; 57-63.
Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H. J. and Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant., 31(3); 427-436.
Jones Jr, J. B., Wolf, B. and Mills, H. A. (1991). Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. Micro-Macro Publishing, Inc.
Kabata-Pendias, A. 2010. Trace Elements in Soils and Plants, fourth ed CRC Press,Boca Raton, FL.
Karakurt, Y., Unlu, H., Unlu, H. and Padem, H. (2009). The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agric. Scand. B Soil Plant Sci., 59(3); 233-237.
Karbassi, S., Nasrabadi, T. and Shahriari, T. (2016). Metallic pollution of soil in the vicinity of National Iranian Lead and Zinc (NILZ) Company. Environ. Earth Sci., 75;1433.
Karbassi, S., Malek, M., Shahriari, T. and Zahed, M. A. (2016). Uptake of metals by plants in urban areas. Int. J. Environ. Sci. Technol., 13; 2847–2854.
Karimi, P., Khavari-Nejad, R. A., Niknam, V., Ghahremaninejad, F. and Najafi, F. (2012). The effects of excess copper on antioxidative enzymes, lipid peroxidation, proline, chlorophyll, and concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii. Sci. World J., 2012; 1-6.
Khan, I., Iqbal, M., Ashraf, M. Y., Ashraf, M. A. and Ali, S. (2016). Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). J. Hazard. Mater., 317; 352-361.
Khellaf, N. and Zerdaoui, M. (2009). Growth response of the duckweed Lemna minor to heavy metal pollution. J. Environ. Health Sci. Eng., 6(3); 161-166.
Kono, Y. and Fridovich, I. (1982). Superoxide radical inhibits catalase. J. Biol. Chem., 257(10); 5751-5754.
Kumar, V., Pandita, S., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P. and Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere, 262; 127810.
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X. and Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam., 28(4); 380-394.
Liu, C., Cooper, R. J. and Bowman, D. C. (1998). Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. Hort Sci., 33(6); 1023-1025.
Liu, J. N., Zhou, Q. X., Sun, T., Ma, L. Q. and Wang, S. (2008). Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull. Environ. Contam. Toxicol., 80(3); 260-265.
Liu, J., Zhou, Q. and Wang, S. (2010). Evaluation of chemical enhancement on phytoremediation effect of Cd-contaminated soils with Calendula officinalis L. Int. J. Phytorem., 12(5); 503-515.
Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q. and Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review. Ecotoxicol. Environ. Saf., 126; 111-121.
Meng, H., Hua, S., Shamsi, I. H., Jilani, G., Li, Y. and Jiang, L. (2009). Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul., 58(1); 47-59.
Molassiotis, A., Tanou, G., Diamantidis, G., Patakas, A. and Therios, I. (2006). Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J. Plant Physiol., 163(2); 176-185.
Mora, V., Bacaicoa, E., Zamarreno, A. M., Aguirre, E., Garnica, M., Fuentes, M. and García-Mina, J. M. (2010). Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J. Plant Physiol., 167(8); 633-642.
Pineros, M. A., Shaff, J. E. and Kochian, L. V. (1998). Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol., 116(4); 1393-1401.
Saffari, V. R. and Saffari, M. (2020). Effects of EDTA, citric acid, and tartaric acid application on growth, phytoremediation potential, and antioxidant response of Calendula officinalis L. in a cadmium-spiked calcareous soil. Int. J. Phytorem., 22(11); 1204-1214.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A. and Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171; 710-721.
Schiavon, M., Pizzeghello, D., Muscolo, A., Vaccaro, S., Francioso, O. and Nardi, S. (2010). High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.). J. Chem. Ecol., 36(6); 662-669.
Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A. and Sumner, M. E. (1996). Methods of soil analysis. part 3: Chemical methods., (soil science society of america inc.: Madison, WI, USA).
Suman, J., Uhlik, O., Viktorova, J. and Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?. Front. Plant Sci., 9; 1476.
Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzałka, K. and Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant., 35(4); 985-999.
Tahir, M. M., Khurshid, M., Khan, M. Z., Abbasi, M. K. and Kazmi, M. H. (2011). Lignite-derived humic acid effect on growth of wheat plants in different soils. Pedosphere, 21(1); 124-131.
Topcuoglu, B. (2013). Effects of humic acids on the phytoex-traction efficiency of sludge applied soil. Int. J. Chem. Environ. Biol. Sci., 1(1); 21-24.
Vara Prasad, M. N. and de Oliveira Freitas, H. M. (2003). Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol., 6(3); 285-321.
Yang, H. L., Hseu, Y. C., Hseu, Y. T., Lu, F. J., Lin, E. and Lai, J. S. (2004). Humic acid induces apoptosis in human premyelocytic leukemia HL-60 cells. Life Sci., 75(15); 1817-1831.
Yildirim, E. (2007). Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric. Scand. B Soil Plant Sci., 57(2); 182-186.
Yoon, J., Cao, X., Zhou, Q. and Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ., 368(2-3); 456-464.
You, J. and Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci., 6; 1092.
Zandonadi, D. B., Canellas, L. P. and Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225(6); 1583-1595.
Zhang, F., Zhang, H., Wang, G., Xu, L. and Shen, Z. (2009). Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J. Hazard. Mater., 168(1); 76-84.