Biosorption Potential of Saraca asoca Bark Powder for Removal of Cr (VI) Ions from Aqueous Solution

Document Type : Original Research Paper


1 Department of Chemistry, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, 211007, India

2 Department of Chemistry, GLA University, Chaumuhan, Mathura, Uttar Pradesh, 281406, India


Saraca asoca bark has long been used in traditional Indian medicine. Considering its low cost and non-toxic nature, it can find application as a biosorbent. This article explores the application of Saraca asoca bark powder (SABP) for biosorption of hexavalent chromium. Various analytical techniques including Field emission scanning electron microscope (FESEM) attached with energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) were adopted in order to identify the physico-chemical features of SABP. Factors such as pH (2-8), contact time (for 3 hours), initial Cr (VI) concentration (10 – 250 mg/l) and temperature (15 - 35°C) were examined for their influence on Cr (VI) biosorption via batch studies. Biosorption data clearly followed Redlich-Peterson isotherm model as compared to Langmuir and Freundlich models. The Langmuir monolayer adsorption capacities (Qm) at 15, 25 and 35°C were 123.4, 125.0 and 175.4 mg/g respectively. Biosorption followed pseudo-second-order kinetics and the mechanism of diffusion was governed by both surface sorption and pore diffusion as demonstrated by the plot for Intraparticle diffusion model and the pore diffusion coefficient (Dp~10-9 cm2/s). The nature of biosorption was found to be spontaneous and endothermic as reflected through various thermodynamic parameters such as the free energy change (ΔG = -3.0 to -3.7 kJ/mol), entropy change (ΔS = 37.8 J/K/mol) and enthalpy change (ΔH = 7.9 kJ/mol). The study recommends that SABP may be utilized as a potential biosorbent for Cr(VI) ions.


Ahmad, F., Misra, L., Tewari, R., Gupta, P., Mishra, P. and Shukla, R. (2016). Anti-inflammatory flavanol glycosides from Saraca asoca bark. Natural product research, 30(4); 489-492.
Ajmani, A., Shahnaz, T., Subbiah, S. and Narayanasamy, S. (2019). Hexavalent chromium adsorption on virgin, biochar, and chemically modified carbons prepared from Phaneravahlii fruit biomass: equilibrium, kinetics, and thermodynamics approach. Environmental Science and Pollution Research, 26(31); 32137-32150. 
Alemu, A., Lemma, B., Gabbiye, N., Alula, M. T. and Desta, M. T. (2018). Removal of chromium (VI) from aqueous solution using vesicular basalt: a potential low cost wastewater treatment system. Heliyon, 4(7); e00682.
Arris, S., Lehocine, M. B. and Meniai, A. H. (2016). Sorption study of chromium sorption from wastewater using cereal by-products. International journal of hydrogen energy, 41(24); 10299-10310.
Bhattacharya, A. K., Naiya, T. K., Mandal, S. N., Das, S. K. (2008) Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different low-cost adsorbents. Chemical Engineering Journal, 137(3); 529-541.
Campaña-Pérez, J. F., Barahona, P. P., Martín-Ramos, P. and Barriga, E. J. C. (2019). Ecuadorian yeast species as microbial particles for Cr (VI) biosorption. Environmental Science and Pollution Research, 26(27); 28162-28172.
Chen, H., Dai, G., Zhao, J., Zhong, A., Wu, J. and Yan, H. (2010). Removal of copper (II) ions by a biosorbent—Cinnamomumcamphora leaves powder. Journal of Hazardous Materials, 177(1-3); 228-236.
Coates, J. (2000). Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.) John Wiley & Sons Ltd. pp. 10815–10837.
Dada, A. O., Adekola, F. A., Odebunmi, E. O., Dada, F. E., Bello, O. M., Akinyemi, B. A., ... and Umukoro, O. G. (2020). Sustainable and low-cost Ocimum gratissimum for biosorption of indigo carmine dye: kinetics, isotherm, and thermodynamic studies. International Journal of Phytoremediation, 22(14); 1524-1537.
Dakiky, M., Khamis, M., Manassra, A. and Mer'Eb, M. (2002). Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in environmental research, 6(4); 533-540.
Doke, K. M. and Khan, E. M. (2017). Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arabian journal of chemistry, 10; S252-S260.
Fuks, L., Filipiuk, D. and Majdan, M. (2006).Transition metal complexes with alginate biosorbent. Journal of Molecular Structure, 792; 104-109.
Gebrehawaria, G., Hussen, A. and Rao, V. M. (2015). Removal of hexavalent chromium from aqueous solutions using barks of Acacia albida and leaves of Eucleaschimperi. International Journal of Environmental Science and Technology, 12(5); 1569-1580.
Gómez-Aguilar, D. L., Rodríguez-Miranda, J. P., Baracaldo-Guzmán, D., Salcedo-Parra, O. J. and Esteban-Muñoz, J. A. (2021). Biosorption of Pb (II) Using Coffee Pulp as a Sustainable Alternative for Wastewater Treatment. Applied Sciences, 11(13); 6066.
Gupta, V. K., Mohan, D., Sharma, S. and Park, K. T. (1998).Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist, 19(2); 129-136.
Hadjmohammadi, M. R., Salary, M. and Biparva, P. (2011). Removal of Cr (Vi) from aqueous solution using Pine Needles Powder as a biosorbent. Journal of Applied Sciences in Environmental Sanitation, 6(1); 1-13.
Karthik, R. and Meenakshi, S. (2014). Removal of hexavalent chromium ions using polyaniline/silica gel composite. Journal of Water Process Engineering, 1; 37-45.
Karthikeyan, S., Sivakumar, B. and Sivakumar, N. (2010). Film and pore diffusion modeling for adsorption of reactive red 2 from aqueous solution on to activated carbon preparedfrom bio-diesel industrial waste. E-Journal of Chemistry, 7(S1); S175-S184.
Kavitha, V. U. and Kandasubramanian, B. (2020).Tannins for wastewater treatment. SN Applied Sciences, 2; 1-21.
Kumar, K. V. (2007). Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes and pigments, 74(3); 595-597.
Kumara, N. T. R. N., Hamdan, N., Petra, M. I., Tennakoon, K. U. and Ekanayake, P. (2014). Equilibrium isotherm studies of adsorption of pigments extracted from Kuduk-kuduk (Melastoma malabathricum L.) pulp onto TiO2 nanoparticles. Journal of Chemistry, 2014; 1-6.
Lagergren, S. (1898). Ueber die Dämpfung electrischer resonatoren. Annalen der Physik, 300(2); 290-314.
Lazarević, S., Janković-Častvan, I., Jovanović, D., Milonjić, S., Janaćković, D. and Petrović, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Science, 37(1-2); 47-57.
Litefti, K., Freire, M. S., Stitou, M. and González-Álvarez, J. (2019). Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports, 9(1); 1-11.
Liu, Y., Xiao, D. and Li, H. (2007). Kinetics and thermodynamics of lead (II) adsorption on vermiculite. Separation Science and Technology, 42(1); 185-202.
Liu, Q., Li, T., Zhang, S., Qu, L. and Ren, B. (2018). Optimization and evaluation of alkali-pretreated Paeonia ostii seed coats as adsorbent for the removal of MB from aqueous solution. Polish Journal of Chemical Technology, 20(3); 29-36.
Ma, Y., Liu, W. J., Zhang, N., Li, Y. S., Jiang, H. and Sheng, G. P. (2014). Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource technology, 169; 403-408.
Medhi, H., Chowdhury, P. R., Baruah, P. D. and Bhattacharyya, K. G. (2020). Kinetics of Aqueous Cu (II) Biosorption onto Thevetiaperuviana Leaf Powder. ACS omega, 5(23); 13489-13502.
Mishra, A., Dubey, A. and Shinghal, S. (2015). Biosorption of chromium (VI) from aqueous solutions using waste plant biomass. International Journal of Environmental Science and Technology, 12(4); 1415-1426.
Mohebali, S., Bastani, D. and Shayesteh, H. (2019). Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: acid and CTAB-acid modified celery (Apium graveolens). Journal of Molecular Structure, 1176; 181-193.
Morales-Barrera, L., Flores-Ortiz, C. M. and Cristiani-Urbina, E. (2020). Single and binary equilibrium studies for Ni2+ and Zn2+ biosorption onto lemna gibba from aqueous solutions. Processes, 8(9); 1089.
Mukhopadhyay, M. K. and Nath, D. (2011). Phytochemical screening and toxicity study of Saraca asoca bark methanolic extract. International Journal of Phytomedicine, 3(4); 498.
Mustapha, S., Shuaib, D. T., Ndamitso, M. M., Etsuyankpa, M. B., Sumaila, A., Mohammed, U. M. and Nasirudeen, M. B. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb (II), Cd (II), Zn (II) and Cu (II) ions from aqueous solutions using Albizia lebbeck pods. Applied water science, 9(6); 1-11.
Mutongo, F., Kuipa, O. and Kuipa, P. K. (2014). Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinorganic chemistry and applications, 2014.
Netzahuatl-Muñoz, A. R., Cristiani-Urbina, M. D. C. and Cristiani-Urbina, E. (2015). Chromium biosorption from Cr (VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium and thermodynamic studies. PLoS One, 10(9); e0137086.
Ofomaja, A. E. and Ho, Y. S. (2007). Effect of pH on cadmium biosorption by coconut copra meal. Journal of Hazardous Materials, 139(2); 356-362.
Omorogie, M. O., Babalola, J. O., Unuabonah, E. I., Song, W. and Gong, J. R. (2016). Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste. Journal of Saudi Chemical Society, 20(1); 49-57.
Pakade, V. E., Ntuli, T. D. and Ofomaja, A. E. (2017). Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder. Applied Water Science, 7(6); 3015-3030.
Pandey, A. K. and Mishra, A. K. (2020). Tunable electrochemical synthesis of pyrrole-based adsorbents. Separation Science and Technology, 55(18); 3329-3342.
Politi, D. and Sidiras, D. (2020). Modified spruce sawdust for sorption of hexavalent chromium in batch systems and fixed-bed columns. Molecules, 25(21); 5156.
Saliba, R., Gauthier, H., Gauthier, R. and Petit-Ramel, M. (2002). The use of eucalyptus barks for the adsorption of heavy metal ions and dyes. Adsorption Science & Technology, 20(2); 119-129.
Sarin, V. and Pant, K. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource technology, 97(1); 15-20.
Sathishkumar, M., Binupriya, A. R., Kavitha, D., Selvakumar, R., Jayabalan, R., Choi, J. G. and Yun, S. E. (2009). Adsorption potential of maize cob carbon for 2, 4-dichlorophenol removal from aqueous solutions: equilibrium, kinetics and thermodynamics modeling. Chemical Engineering Journal, 147(2-3); 265-271.
Saxena, A., Bhardwaj, M., Allen, T., Kumar, S. and Sahney, R. (2017). Adsorption of heavy metals from wastewater using agricultural–industrial wastes as biosorbents. Water Science, 31(2); 189-197.
Schmuhl, R., Krieg, H. M. and Keizer, K. (2001). Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies. Water Sa, 27(1); 1-8.
Smitha, G. R. and Thondaiman, V. (2016). Reproductive biology and breeding system of Saraca asoca (Roxb.) De Wilde: a vulnerable medicinal plant. Springerplus, 5(1); 1-15.
Sud, D., Mahajan, G. and Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–A review. Bioresource technology, 99(14); 6017-6027.
Tan, W. T., Ooi, S. T. and Lee, C. K. (1993). Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environmental technology, 14(3); 277-282.
Tao, F., Wang, Y., Zhao, Z., Liu, X., Zhang, G., Li, C., ... and Huo, Q. (2020). Effective removal of Cr (VI) in aqueous solutions using Caulis lonicerae residue fermented by Phanerochaete chrysosporium. Preparative Biochemistry & Biotechnology; 1-10.
Unuabonah, E. I., Omorogie, M. O. and Oladoja, N. A. (2019). Modeling in adsorption: fundamentals and applications. In Composite Nanoadsorbents (pp. 85-118). Elsevier.
Vinod, V. T. P., Sashidhar, R. B. and Sreedhar, B. (2010). Biosorption of nickel and total chromium from aqueous solution by gum kondagogu (Cochlospermum gossypium): A carbohydrate biopolymer. Journal of hazardous materials, 178(1-3); 851-860.
Wang, J. and Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology advances, 27(2); 195-226.
Yasemin, B. and Zeki, T. (2007). Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of environmental sciences, 19(2); 160-166.
Yuvaraja, G., Krishnaiah, N., Subbaiah, M. V. and Krishnaiah, A. (2014). Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids and Surfaces B: Biointerfaces, 114; 75-81.
Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., Huang, X. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218; 351-359.