Temporal Monitoring and Effect of Precipitation on the Quality of Leachate from the Greater Casablanca Landfill in Morocco

Document Type : Original Research Paper

Authors

Water Treatment and Valorization Research Team, Geosciences Applied to Development Engineering Laboratory, Faculty of Sciences Ain Chock . 5366 Maarif 20100, Casablanca. Hassan II University, Morocco.

Abstract

A monthly temporal monitoring of the physico-chemical parameters of the leachate from the Greater Casablanca “Mediouna” open-air landfill in Morocco over a period of 13 months was carried out to show their variability over time. This monitoring also highlights the effect of rainfall on leachate quality through fluctuations observed in wet and dry periods. Indeed, the leachate was sampled from a collector that drains a mixture of young and mature leachate. Several physico-chemical parameters were studied: pH, temperature, conductivity, organic matter (BOD5 and COD), total matter (TS, TVS), nitrogen (N-NO2-, N-NO3-, N-NH4+, TKN), total phosphorus (Tp), salts (Cl-, SO42-) and metals (Cd, Co, Cr, Ca, Cu, Fe, K, Mg, Mn, Ni, Pb, Zn). As a result, significant concentrations were recorded throughout the monitoring for the majority of the parameters, showing a high aggressiveness of the leachate. Also, statistically significant relationships were observed between the different parameters. On the other hand, the leachate pollution index (LPI) was calculated to determine the overall potential of leachate pollution. The identification and study of the behaviour of the physico-chemical parameters is very useful for the design of an adequate leachate treatment plant for the Greater Casablanca landfill "Mediouna", taking into consideration the extreme values recorded during the monitoring period, in order to avoid any malfunctioning due to an underestimation of the pollution.

Keywords


Agbozu, I. E., Oghama, O. E., Akinyemi, O. O. (2015). Leachate contamination potential of a waste dumpsite in Effurun city, Southern Nigeria using the leachate pollution index. African J. Sci. Technol. Innov. Dev., 7(4);220–229.
Åkesson, M. and Nilsson, P. (1997). Seasonal Changes of Leachate Production and Quality from Test Cells. J. Environ. Eng., 123(9);892–900.
Al-Yaqout, A. F. and Hamoda, M. F. (2003). Evaluation of landfill leachate in arid climate - A case study. Environ. Int., 29(5);593–600.
Aziz, H. A. and Umar, M. and Yusoff, M. S. (2010). Variability of parameters involved in leachate pollution index and determination of LPI from four landfills in Malaysia. Int. J. Chem. Eng., 2010;1–6.
B.Mondiale, DEM (2017). Le Coût de la Dégradation de L’Environnement au Maroc  [Electronic version]. (Croitoru Lelia and Sarraf Maria, Ed.).,. Vol. 1 World Bank group. Retrieved from http://documents.banquemondiale.org/curated/fr/741961485508255907/Le-Coût-de-la-Dégradation-de-l-Environnement-au-Maroc
Baun, D. L. and Christensen, T. H. (2004). Speciation of heavy metals in landfill leachate: A review. Waste Manag. Res., 22(1);3–23.
Baziene, K., Vasarevicius, S., Baltrenas, P. and Baltrenaite, E. (2013). Influence of total precipitation and air temperature on the composition of municipal landfill leachate. Environ. Eng. Manag. J., 12(1);175–182.
Benoit, M. (2014). Les fuites d ’azote en grandes cultures céréalières : Lixiviation et émissions atmosphériques dans des systèmes biologiques et conventionnels du bassin de la Seine (France). Dissertation, University of Pierre et Marie Curie.
Bozkurt, S., Moreno, L. and Neretnieks, I. (2000). Long-term processes in waste deposits. Sci. Total Environ., 250(1–3);101–121.
Burton, S. A. Q. and Watson-Craik, I. A. (1998). Ammonia and nitrogen fluxes in landfill sites: Applicability to sustainable landfilling. Waste Manag. Res., 16(1);41–53.
Calace, N., Liberatori, A., Petronio, B. M. and Pietroletti, M. (2001). Characteristics of different molecular weight fractions of organic matter in landfill leachate and their role in soil sorption of heavy metals. Environ. Pollut., 113(3);331–339.
Chen, P. H. (1996). Assessment of leachates from sanitary landfills : impact of age , rainfall , and treatment. Environ. Int., 22(2);225–237.
Christensen, T. H. and Kjeldsen, P. (1989). Basic biochemical processes in landfills. In: Sanitary landfilling process, technology and environmental impact. (pp. 29–49). Academic Press.
Christensen, Thomas H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J. and Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Appl. Geochemistry., 16(7–8);659–718.
Chu, L. M., Cheung, K. C. and Wong, M. H. (1994). Variations in the chemical properties of landfill leachate. Environ. Manage., 18(1);105–117.
DEM (2014). Valeurs Limites de Rejet à respecter par les déversements (Normes de pollution). (pp.1-23).
Demirbilek, D., Öztüfekçi Önal, A., Demir, V., Uslu, G. and Arslanoglu-Isik, H. (2013). Characterization and pollution potential assessment of Tunceli, Turkey municipal solid waste open dumping site leachates. Environ. Monit. Assess., 185(11);9435–9449.
Detho, A. A., Daud, Z., Samo, S. R., Khan, Z., Memon, D. A. and Awang, H. (2020). Physicochemical Characteristics of Landfill Leachate from Simpang Renggam Landfill Site, Johor, Malaysia. Quest Res. J., 18(02);82–88.
Durmusoglu, E. and Yilmaz, C. (2006). Evaluation and temporal variation of raw and pre-treated leachate quality from an active solid waste landfill. Water. Air. Soil Pollut., 171(1–4);359–382.
Ehrig, H.-J. (1989). Water and element balances of landfills. (In: P. Baccini (Ed.), The Landfill. (pp. 83–115 ).Springer.)
Ehrig, Hans-Jurgen (1989). Leachate quality. (In: Sanitary landfilling: Process, technology and environmental impact, (pp. 213–229).Academic Press.)
El-Fadel, M., Bou-Zeid, E., Chahine, W. and Alayli, B. (2002). Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag., 22(3);269–282.
Erses, A. S., Onay, T. T. and Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour. Technol., 99(2008); 5418–5426.
Fairweather, R. J. and Barlaz, M. A. (1998). Hydrogen sulfide production during decomposition of landfill inputs. J. Environ. Eng., 124(4);353–361.
Fan, H. jung, Shu, H. Y., Yang, H. S. and Chen, W. C. (2006). Characteristics of landfill leachates in central Taiwan. Sci. Total Environ., 361(2006);25–37.
Farhana Zakaria, S. N. and Abdul Aziz, H. (2018). Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study. (Paper presented at the IOP Conference Series: Earth and Environmental Science 120 ), (pp.1–8).
Fatta, D., Voscos, C., Papadopoulos, A. and Loizidou, M. (1998). Leachate quality of a MSW landfill. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng., 33(5);749–763.
Filho, J. L. da P. and Miguel, M. G. (2017). Long-Term Characterization of Landfill Leachate: Impacts of the Tropical Climate on its Composition. Am. J. Environ. Sci., 13(2);116–127.
Frascari, D., Bronzini, F., Giordano, G., Tedioli, G. and Nocentini, M. (2004). Long-term characterization, lagoon treatment and migration potential of landfill leachate: A case study in an active Italian landfill. Chemosphere., 54(3);335–343.
Frikha, Y., Fellner, J. and Zairi, M. (2017). Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia. Waste Manag. Res., 35(9);1–9.
Gould, J. P., Cross, W. H. and Pohland, F. G. (1990). Factors influencing mobility of toxic metals in landfills operated with Leachate recycle. In: Emerging Technologies in Hazardous Waste Management. (p p. 267–291) American Chemical Society
Gounaris, V., Anderson, P. R. and Holsen, T. M. (1993). Characteristics and Environmental Significance of Colloids in Landfill Leachate. Environ. Sci. Technol., 27(7);1381–1387.
Guerrero-Rodríguez, D., Sánchez-Yáñez, J. M., Buenrostro-Delgado, O. and Márquez-Benavides, L. (2014). Phytotoxic effect of landfill leachate with different pollution indexes on common bean. Water. Air. Soil Pollut., 225(6);1–7.
Huang, Q., Yang, Y., Pang, X. and Wang, Q. (2008). Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. J. Environ. Sci., 20(4);499–504.
Hussein, M., Yoneda, K., Zaki, Z. M., Othman, N. A. and Amir, A. (2019). Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environ. Nanotechnology, Monit. Manag., 12(100232);1–9.
James, S. C. (1977). Metals in municipal landfill leachate and their health effects. Am. J. Public Health., 67(5);429–432.
Jensen, D. L. and Christensen, T. H. (1999). Colloidal and dissolved metals in leachates from Danish landfills. Water Res., 33(9);2139–2147.
Johansen, O. J. and Carlson, D. A. (1976). Characterization of sanitary landfill leachates. Water Res., 10(12);1129–1134.
Khattabi, H., Aleya, L. and Mania, J. (2002). Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste Manag. Res., 20(4);357–364.
Kim, H., Jang, Y. C. and Townsend, T. (2011). The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. J. Hazard. Mater., 194;369–377.
Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A. and Christensen, T. H. (2002). Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol., 32(4);297–336.
Kjeldsen, P., Grundtvig, A., Winther, P. and Andersen, J. S. (1998). Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source: Landfill history and leachate composition. Waste Manag. Res., 16(1);3–13.
Kumar, D. and Alappat, B. J. (2005). a Errors involved in the estimation of leachate pollution index. Pract. Period. Hazardous, Toxic, Radioact. Waste Manag., 9(2);103–111.
Kumar, D. and Alappat, B. J. (2005). b Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technol. Environ. Policy., 7(3);190–197.
Kuruparan, P., Tubtimthai, O., Visvanathan, C. and Tränkler, J. (2003). Influence of Tropical Seasonal Variations Operation Modes and Waste Composition on Leachate Characteristics and Landfill Settlement. In: Landfill Management. (pp. 199–208).
Luo, H., Zeng, Y., Cheng, Y., He, D. and Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Sci. Total Environ., 703;135468.
M.Trochim, W., P.Donnelly, J. and Kanika, A. (2015). Research Methods the essential knowledge base.,. 2nd ed. Cengage Learning. (pp. 1–446).
Mavakala, B. K., Le Faucheur, S., Mulaji, C. K., Laffite, A., Devarajan, N., Biey, E. M., Giuliani, G., Otamonga, J. P., Kabatusuila, P., Mpiana, P. T. and Poté, J. (2016). Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manag., 55;238–248.
Mishra, H., Rathod, M., Karmakar, S. and Kumar, R. (2016). A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India. Environ. Monit. Assess., 188(6);1–23.
Mishra, S., Tiwary, D. and Ohri, A. (2018). Leachate characterisation and evaluation of leachate pollution potential of urban municipal landfill sites. Int. J. Environ. Waste Manag., 21(4);217–230.
Mor, S., Negi, P. and Khaiwal, R. (2018). Assessment of groundwater pollution by landfills in India using leachate pollution index and estimation of error. Environ. Nanotechnology, Monit. Manag., 10(August);467–476.
Müller, G. T., Giacobbo, A., dos Santos Chiaramonte, E. A., Rodrigues, M. A. S., Meneguzzi, A. and Bernardes, A. M. (2015). The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Manag., 36;177–183.
Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V. and Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environ. Pollut., 220;1–12.
Naveen, B. P., Sivapullaiah, P. V. and Sitharam, T. G. (2016). Effect of aging on the leachate characteristics from municipal solid waste landfill. Japanese Geotech. Soc. Spec. Publ., 2(56);1940–1945.
Öman, C. B. and Junestedt, C. (2008). Chemical characterization of landfill leachates - 400 parameters and compounds. Waste Manag., 28(10);1876–1891.
Oman, C. and Hynning, P. A. (1993). Identification of organic compounds in municipal landfill leachates. Environ. Pollut., 80;265–271.
Park, S., Joe, K. S., Han, S. H., Eom, T. Y. and Kim, H. S. (1999). Characteristics and distribution of metallic elements in landfill leachates. Environ. Technol. (United Kingdom)., 20(4);443–448.
Price, G. A., Barlaz, M. A. and Hater, G. R. (2003). Nitrogen management in bioreactor landfills. Waste Manag., 23(7);675–688.
Rafizul, I. M. and Alamgir, M. (2012). Characterization and tropical seasonal variation of leachate: Results from landfill lysimeter studied. Waste Manag., 32(11);2080–2095.
Rajoo, K. S., Karam, D. S., Ismail, A. and Arifin, A. (2020). Evaluating the leachate contamination impact of landfills and open dumpsites from developing countries using the proposed Leachate Pollution Index for Developing Countries (LPIDC). Environ. Nanotechnology, Monit. Manag., 14(2020);1–13.
Reddy, P. J. (2017). Municipal solid waste management (C. Press, Ed.)., Taylor & Francis. (pp. 1–470).
Reitzel, S., Faquhar, G. and McBean, E. (1992). Temporal characterization of municipal solid waste leachate. Can. J. Civ. Eng., 19;668–679.
Reshadi, M. A. M., Bazargan, A. and McKay, G. (2020). A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Sci. Total Environ., 731(2020);1–15.
Rezaeisabzevar, Y., Bazargan, A. and Zohourian, B. (2020). Landfill site selection using multi criteria decision making: Influential factors for comparing locations. J. Environ. Sci. (China)., 93(2020);170–184.
Statom, R. A., Thyne, G. D. and McCray, J. E. (2004). Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environ. Geol., 45(7);982–991.
Tatsi, A. A. and Zouboulis, A. I. U. (2002). A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res., 6(2002);207–219.
Tränkler, J., Visvanathan, C., Kuruparan, P. and Tubtimthai, O. (2005). Influence of tropical seasonal variations on landfill leachate characteristics - Results from lysimeter studies. Waste Manag., 25(10);1013–1020.
Vadillo, I., Carrasco, F., Andreo, B., García De Torres, A. and Bosch, C. (1999). Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). Environ. Geol., 37(4);326–332.
Vahabian, M., Hassanzadeh, Y. and Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environ. Monit. Assess., 191(2);1–19.
Xiaoli, C., Shimaoka, T., Xianyan, C., Qiang, G. and Youcai, Z. (2007). Characteristics and mobility of heavy metals in an MSW landfill: Implications in risk assessment and reclamation. J. Hazard. Mater., 144(1–2);485–491.
Yang, H., Yue, B., Liu, Y., Wu, X., Gao, H., Zhang, Z. and Yan, Z. (2019). Rural solid waste—characteristics and leachate pollution assessment for different precipitation levels, China. Environ. Sci. Pollut. Res., 26(11);11234–11244.
Yildiz, E. D., Ünlü, K. and Rowe, R. K. (2004). Modelling leachate quality and quantity in municipal solid waste landfills. Waste Manag. Res., 22(2);78–92.
Zhang, Q. Q., Tian, B. H., Zhang, X., Ghulam, A., Fang, C. R. and He, R. (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag., 33(11);2277–2286.