Assessment of Urban Growth and Variation of Aerosol Optical Depth in Faridabad District, Haryana, India

Document Type : Original Research Paper


Amity Institute of Geoinformatics and Remote Sensing (AIGIRS), Amity University, Sector 125, Noida-201313, U.P., India


Sustainable urbanization under sustainable development goals requires quantitative information on urban landscape. Despite having the fastest growth of urban area and poor air quality, Faridabad, a constituent district of National Capital Region, fails to gain much research attention.  Present study based on multi-temporal; freely available satellite image has indicated 3% increase in the built-up against 2% decrease arable land from 2008 to 2018. Further, spatial metrics (Shanon’s entropy, class area (CA), number of patches (NP), largest patch index (LPI)) has indicated scattered development of built-up. Increase CA (11470 ha in 2008 and 13806 ha in 2018) and NP (221 in 2008 and 476 in 2018) have indicated isolated development of built-up with small area coverage. Increase in LPI (12.5% in 2008 and 13.5% in 2018) of built up indicated compact growth of dense built-up in the southern and eastern side leading to the vertical expansion of the city area. Linear expansion of the residential built-up, industrial, and commercial area along the highways, roads and railways and vehicular emission has contributed to the high aerosol concentration. While, in the rural region the high aerosol loading has also been observed because of the extensive use of fertilizer and stubble burning. Present research on land-use land cover changes and its impact on air quality could be contributed significantly in urban policy making for climate change adaptation and mitigation strategies.


Bibi, H., Alam, K., Chishtie, F., Bibi, S., Shahid, I. and Blaschke, T. (2015). Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ., 111; 113–126.
Bilal, M. and Nichol, J. E. (2015). Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res., 120(15); 7941-7957.
Chitranshi, S., Sharma, S. P. and Dey, S. (2015). Satellite-based estimates of outdoor particulate pollution (PM 10) for Agra City in northern India. Air Qual. Atmos. Health, 8(1); 55–65.
Chowdhury, S., Dey, S., Di Girolamo, L., Smith, K. R., Pillarisetti, A. and Lyapustin, A. (2019). Tracking ambient PM 2.5 build-up in Delhi national capital region during the dry season over 15 years using a high-resolution (1 km) satellite aerosol dataset. Atmos. Environ., 204; 142-150.
Chowdhury, S., Dey, S., Ghosh, S. and Saud, T. (2016). Satellite-based estimates of aerosol washout and recovery over India during monsoon. Aerosol Air Qual Res., 16(5); 1302–1314.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ., 37(1); 35–46.
Filonchyk, M., Yan, H., Zhang, Z., Yang, S., Li, W. and Li, Y. (2019). Combined use of satellite and surface observations to study aerosol optical depth in different regions of China. Sci. Rep., 9(1); 1–15.
Ghosh, S., N., K. V., Kumar, S. and Midya, K. (2021). Seasonal Contrast of Land Surface Temperature in Faridabad. In Methods and Applications of Geospatial Technology in Sustainable Urbanism, 217–250. IGI Global.
Hakim, A. M. Y., Baja, S., Rampisela, D. A. and Arif, S. (2019). Spatial dynamic prediction of landuse / landcover change (case study: Tamalanrea sub-district, makassar city. IOP Conference Series: Earth and Environmental Science, 280(1); 012023.
IQAir Visual (2018) 2018 World air quality report. Region and City PM2.5 ranking.
Jensen, S. S., Berkowicz, R., Sten Hansen, H. and Hertel, O. (2001). A Danish decision-support GIS tool for management of urban air quality and human exposures. Transp. Res. D Transp. Environ., 6(4); 229–241.
Kafy, A. A., Naim, M. N. H., Subramanyam, G., Faisal, A. Al, Ahmed, N. U., Rakib, A. Al,  and Sattar, G. S. (2021). Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environ. Challenges, 4; 100084
Kumar, N., Linderman, M., Chu, A. D., Buda, T., Tripathi, S., Foster, A. D. and Liang, D. (2016). Delhi’s Air Pollution “(Re)distribution and Air Quality Regulations.” Environ. Policy Gov., 46(1); 77–86.
Kumar, S., Ghosh, S., Hooda, R. S. and Singh, S. (2019). Monitoring and prediction of land use land cover changes and its impact on land surface temperature in the central part of hisar district, Haryana under semi-arid zone of India. J. Landsc. Ecol., 12(3); 117–140.
Kumar, S., Ghosh, S. and Singh, S. (2021). Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS. Environ. Dev. Sustain., 1-41.
Kumar, S., Midya, K., Ghosh, S. and Singh, S. (2021). Pixel-Based vs. Object-Based Anthropogenic Impervious Surface Detection: Driver for Urban-Rural Thermal Disparity in Faridabad, Haryana, India. Geocarto Int., 0(0); 1–23.
Liu, C., Shen, X. and Gao, W. (2018). Intercomparison of CALIOP, MODIS, and AERONET aerosol optical depth over China during the past decade. Int. J. Remote Sens., (21); 7251–7275.
Mahajan, P. and Mohd. M. T. (2015). Study of Variation of Aerosol Optical Depth Over Alwar District Using Modis Data. Proceedings of 16 th Esri India User Conference 2015, 1–6.
Mhawish, A., Banerjee, T., Broday, D. M., Misra, A. and Tripathi, S. N. (2017). Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sens. Environ., 201; 297–313.
Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D. M. and Chatfield, R. (2019). Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ., 224; 12–28.
Nichol, J. E. and Bilal, M. (2016). Validation of MODIS 3 km resolution aerosol optical depth retrievals over Asia. Remote Sens., 8(4); 328.
NRSC. (2012). National Land Use Land Cover Mapping using Multi-temporal Satellite Data Technical Manual (2nd Cycle) NRSC. Hyderabad.
Pal, R., Chowdhury, S., Dey, S. and Sharma, A. R. (2018). 18-year ambient PM2.5 exposure and night light trends in Indian cities: Vulnerability assessment. Aerosol Air Qual. Res., 18(9); 2332–2342.
Reis, J. P., Silva, E. A. and Pinho, P. (2016). Spatial metrics to study urban patterns in growing and shrinking cities. Urban Geogr., 37(2); 246–271.
Remer, L.A., Kleidman, R.G., Levy, R.C., Kaufman, Y.J., Tanré, D., Mattoo, S., Martins, J.V., Ichoku, C., Koren, I., Yu, H. and Holben, B.N. (2008). Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos., 113(14); 1–18.
Sharma, V., Ghosh, S., Bilal, M., Dey, S. and Singh, S. (2021). Performance of MODIS C6.1 Dark Target and Deep Blue aerosol products in Delhi National Capital Region, India: Application for aerosol studies. Atmos. Pollut. Res., 12(3); 65–74.
Shen, X., Bilal, M., Qiu, Z., Sun, D., Wang, S. and Zhu, W. (2019). Long-term spatiotemporal variations of aerosol optical depth over Yellow and Bohai Sea. Environ. Sci. Pollut. Res., 26(8); 7969–7979.
Srivastava, P., Dey, S., Agarwal, P. and Basil, G. (2014). Aerosol characteristics over Delhi national capital region: A satellite view. Int. J. Remote Sens., 35(13); 5036–5052.
Srivastava, R., Ramachandran, S., Rajesh, T. A. and Kedia, S. (2011). Aerosol radiative forcing deduced from observations and models over an urban location and sensitivity to single scattering albedo. Atmos. Environ., 45(34); 6163–6171.
Superczynski, S. D. and Christopher, S. A. (2011). Exploring land use and land cover effects on air quality in Central Alabama using GIS and remote sensing. Remote Sens., 3(12); 2552–2567.
Teotia, M. K. and Kumar, R. (2015). The State of Cities in North-Western India : A Case of Selected JNNURM Cities (Study Focus City: Faridabad). CRRID, Chandigarh.
U N. (2018). 2018 Revision of World Urbanization Prospects | Multimedia Library - United Nations Department of Economic and Social Affairs.
Yeh, A. G. O. and Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogramm. Eng. Remote Sensing, 67(1); 83–90.