Ozonation of Procion Blue Reactive Dye and its Kinetics Study

Document Type : Original Research Paper


Department of Chemical Engineering, Visvesvaraya National Institute of Technology Nagpur, Nagpur-440 010, India


In advanced oxidation processes, the application of ozonation has been immensely used in recent years for the treatment of effluent water from pharmaceutical, textile and chemical industries. In this study, procian blue, a major and vastly used reactive dye in the textile industry was chosen for ozonation. This work investigated the effect of ozonation for the treatment of synthetic textile effluent water. The change of pH values of dye solutions from 2-12 had moderate effect on dye removal. The degradation rate was faster during the initial period of ozonation and reached highest dye removal around 90 minutes. The highest 87% removal of dye was observed for the case of 60 mg/L dye solution at pH 12. At higher pH, the dye degradation increased as the rate of formation of hydroxyl radical increased with pH. Factors influencing on dye degradation like concentration of dye, time of ozonation, and addition of H2O2 with ozone (combined treatment) were also evaluated. The combined treatment (5 g/L of hydrogen peroxide) increased the degradation of dye to 92% as compared to 85% for pure ozonation process of 60 mg/L dye solution of initial pH 10. The procian blue dye degradation followed pseudo-first order kinetics with a value of rate constant 2.48×10-2 /min.


Alencar, W. S., Lima, E. C., Royer, B., dos Santos, B. D., Calvete, T., da Silva, E. A. and Alves, C. N. (2012). Application of aqai stalks as biosorbents for the removal of the dye Procion Blue MX-R from aqueous solution. Sep. Sci. Technol., 47(3); 513-526.
Allegre, C., Moulin, P., Maisseu, M. and Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. J. Membr. Sci., 269(1-2); 15–34.
Almeida, E. J. R. and Corso, C. R. (2014). Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112; 317-322.
Alvares, A. B. C., Diaper, C. and Parsons, S. A. (2001). Partial oxidation of hydrolyzed and unhydrolysed textile dyes by ozone and the effect on biodegradability. Process Saf. Environ., 79(2); 103–108.
Bahrami, M., Amiri, M. J. and Bagheri, F. Y. (2020). Optimization of crystal violet adsorption by chemically modified potato starch using response surface methodology. Pollution, 6(1); 159-170.
Cardoso, N. F., Lima, E. C., Pinto, I. S., Amavisca, C. V., Royer, B., Pinto, R. B., Alencar, W. S. and Pereira, S. F. P. (2011). Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution. J. Environ. Manage., 92(4); 1237–1247.
Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P. and Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J. Hazard. Mater., 174(1-3); 694–699.
de Lima, R. O. A., Bazo, A. P., Salvadori, D. M. F., Rech, C. M., Oliveira, D. P. and Umbuzeiro, G. A. (2007). Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 626(1-2); 53–60.
de Souza, S. M. A. G. U., Bonilla, K. A. S. and de Souza, A. A. U. (2010). Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J. Hazard. Mater.,179(1-3); 35-42.
Dotto, G. L., Lima, E. C. and Pinto, L. A. A. (2012). Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis. Bioresour. Technol., 103(1); 123–130.
El-Ashkar, T. Y. M., Nashy, E. H. A., Masoud, R. A., Haroun, A. A., Youssef, M. A. and Abdallah, A. E. M. (2021). Integration of fenton oxidation with nano-graphene oxide to eliminate the hazardous effect of chromated/dyed tannery effluents. Egypt. J. Chem., 64(2); 649–660.
Franssen, M. C. R., Kircher, M. and Wohlgemuth, R. (2010). Industrial Biotechnology in the chemical and pharmaceutical industries. (In W. Soetaert, & E. J. Vandamme (Eds.), Industrial Biotechnology Sustainable Growth and Economic Success (pp. 323-348). Wiley-VCH Verlag GmbH & Co.)
Georgin, J., da Silva Marques, B., da Silveira Salla, J., Foletto, E. L., Allasia, D. and Dotto, G. L. (2018). Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent. Environ. Sci. Pollut. Res., 25(7); 6429-6442.
Ghaly, A. E., Ananthashankar, R., Alhattab, M. and Ramakrishnan, V. V. (2014). Production, characterization and treatment of textile effluents: A critical review. J. Chem. Eng. Process. Technol., 5(1); 182-199.
Gonen, F. and Onalan, F. (2016). Adsorptive removal behaviour of procion MX-R dye from SRDW by chitosan. Appl. Ecol. Environ. Res., 14(1); 77-98.
Hassani, K. E., Kalnina, D., Turks, M., Beakou, B. H. and Anouar, A. (2018). Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst. Sep. Purif. Technol., 210; 764-774.
Hessel, C., Allegre, C., Maisseu, M., Charbit, F. and Moulin, P. (2007). Guidelines and legislation for dye house effluents. J. Environ. Manage., 83(2); 171–180.
Honorio, J. F., Veit, M. T., Goncalves, G. D. C., de Campos, E. A. and Fagundes-Klen, M. R. (2016). Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors. Water Sci. Technol., 73(5); 1166-1174.
Khuntia, S., Majumdar, S. K. and Ghosh, P. (2012). Removal of Ammonia from Water by Ozone Microbubbles. Ind. Eng. Chem. Res., 52(1); 318-326.
Nascimento, M. A., Cruz, J. C., Rodrigues, G. D., de Oliveira, A. F. and Lopes, R. P. (2018). Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J. Clean. Prod., 202; 264-272.
Oplatowska, M., Donnelly, R. F., Majithiya, R. J., Kennedy, D. G. and Elliott, C. T. (2011). The potential for human exposure, direct and indirect, to the suspected carcinogenic triphenylmethane dye Brilliant Green from green paper towels. Food Chem. Toxicol., 49(8); 1870–1876.
Palanivelan, R., Ayyasamy, P. M. and Ramya, S. (2019). Optimization of significant factors on the microbial decolorization of azo dye in an aqueous medium by design of experiments. Pollution, 5(1); 1-11.
Philippopoulos, C. J. and Nikolaki, M. D. (2010). Photocatalytic Processes on the Oxidation of Organic Compounds in Water. (In R. Blandna (Ed), New Trends in Technologies (pp 89-107). IntechOpen.)
Prola, L. D. T., Acayanka, E., Lima, E. C., Umpierres, C. S., Vaghetti, J. C. P., Santos, W. O., Laminsi, S. and Djifon, P. T. (2013). Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of reactive red 120 textile dye from aqueous solution. Ind. Crop. Prod., 46; 328–340.
Rahman, A., Urabe, T. and Kishimoto, N. (2013). Color removal of reactive procion dyes by clay adsorbents. Procedia Environ. Sci., 17; 270-278.
Royer, B., Cardoso, N. F., Lima, E. C., Ruiz, V. S., Macedo, T. R. and Airoldi, C. (2009). Organo functionalized kenyaite for dye removal from aqueous solution, J. Colloid Interface Sci., 336(2); 398–405.
Sari, M. I., Agustina, T. E., Melwita, E. and Aprianti, T. (2017, November). Color and COD degradation in photocatalytic process of procion red by using TiO2 catalyst under solar irradiation. In AIP Conference Proceedings (Vol. 1903, No. 1, p. 040017 1-5). AIP Publishing LLC.
Selvakumar, K. V., Basha, C. A., Prabhu, H. J., Narayanan, A. and Nagarajan, J. (2010). Electro oxidation and biodegradation of textile dye effluent containing Procion Blue 2G using fungal strain Phanerochate chrysosporium MTCC 787. Int. J. Chem. React. Eng., 8(1); A147.
Sharma, S., Buddhdev, J., Patel, M. and Ruparelia, J. P. (2013). Studies on degradation of reactive red 135 dye in wastewater using ozone. Procedia Eng., 51; 451-455.
Soares, O. S. G. P., Orfao, J. J. M., Portela, D., Vieira, A. and Pereira, M. F. R. (2006) Ozonation of textile effluents and dye solutions under continuous operation: influence of operating parameters. J. Hazard. Mater., 37(3); 1664–1673.
Suryawan, I. W. K., Afifah, A. S. and Prajati, G. (2019, June). Pretreatment of endek wastewater with ozone/hydrogen peroxide to improve biodegradability. In AIP Conference Proceedings (Vol. 2114, No. 1, p. 050011). AIP Publishing LLC.
Tkachenko, O., Panteleimonov, A., Padalko, I., Korobov, A., Gushikem, Y. and Kholin, Y. (2014). Silica functionalized with 1-propyl-3-methylimidazolium chloride as an efficient adsorbent for the removal of Eosin Yellow and Reactive Blue 4. Chem. Eng. J., 254; 324-332.
Tony, M. A. and Mansour, S. A. (2019). Removal of the commercial reactive dye Procion Blue MX-7RX from real textile wastewater using the synthesized Fe2O3 nanoparticles at different particle sizes as a source of Fenton's reagent. Nanoscale Adv., 1(4); 1362-1371.
Udhayakumar, G., Rashmi, M. R., Patel, K., Ramesh, G. P. and Suresh, A. (2016). Implementation of high-frequency high-voltage power supply for ozone generator system using embedded controller. Int. Conf. Circuit Power Comput. Technol., 1-6.
UNSD (2013). United Nations Statistics Division.
Wang, S., Li, D., Sun, C., Yang, S., Guan, Y. and He, H. (2014). Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl. Catal. B., 144; 885–892.
Zaharia, C., Suteu, D., Muresan, A., Muresan, R. and Popescu, A. (2009). Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ. Eng. Manag. J., 8(6); 1359-1369.