Estimation of possible Biodegradation of Polythene by Fungal Isolates Growing on Polythene Debris

Document Type : Original Research Paper


1 Mewar University, Gangrar,Chittoregarh,India

2 Department of Botanyو Maharshi Dayanand Saraswati University, Ajmer, India.


Consumption of polythene is unavoidable in this era and it is increasing day by day. Polythene’s hazardous waste is adversely effecting environment. In fact any form of polythene is a nuisance to the environment because of strong resistance against degradation thus; they remain in nature for a very long time. Biodegradation is the only promising solution to overcome this problem.  Fungi, a group of saprophytic organisms are evolved to adapt for almost every environment, specially marine and freshwater source. This property drives fungi to grown on polythene even in adverse environment. So, present study was planned to compare biological degradation of low density polythene [LDPE] and biodegradable polythene by potential fungus to find out an eco-friendly and economic solution of polythene waste. Ten fungal strains were isolated from rotting polythene debris those are Penicillium chrysogenum, Rhizopus nigricans, Chaetomium murorum, Memnoniella echinata, Aspergillus fumigatus, Stachybotrys chartarum, Aspergillus niger, Chaetomium globosum, Aspergillus flavus and Fusarium oxysporum, in which Penicillium chrysogenum, Rhizopus nigricans, Aspergillus fumigatus, Aspergillus niger and Aspergillus flavus showed greatest results in terms of degrading both Low density polythene and biodegradable polythene. These isolates also showed good enzymatic reaction and weight loss. SEM analysis of polythene surface was also in support of these findings.


Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S. and Uppara, P. V. (2008). Biodegradation of polyethylene and polypropylene. Ind. J. Biotech., 7(1); 9–22.
Awasthi, S., Srivastava, N., Singh, T., Tiwary, D. and Mishra, P. K. (2017). Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech., 7(1);1–8.
Bandh, S. A., Kamili, A. N. and Ganai, B. A. (2011). Identification of some Penicillium species by traditional approach of morphological observation and culture. Af. J. Micro.Res., 5(21); 3493–3496.
Christensen, T., Woeldike, H., Boel, E., Mortensen, S. B., Hjortshoej, K., Thim, L. and Hansen, M. T. (1988). High level expression of recombihant genes in aspcrgiuus oryzae. Bio/Technology, 6(12); 1419–1422.
Danso, D., Chow, J. and Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. App. and Environ. Micro., 85(19).
Das, M. P. and Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech., 5(1); 81–86.
Dilara, P. A. and Briassoulis, D. (2000). Degradation and stabilization of low-density polyethylene films used as greenhouse covering materials. J. Ag. and Eng. Res., 76(4); 309–321.
Duddu, M. K. and Guntuku, G. (2015). Isolation and Screening of Actinomycetes for Biodegradation of Low Density Polyethylene from Mangrove Sediment. Int. J. Pharm. Res. & Rev., 4(11); 14–22.
Ferreira, L. M., Falcão, A. N. and  Gil, M. H. (2005). Modification of LDPE molecular structure by gamma irradiation for bioapplications. Nucl Instrum Methods in Phys Res.B., 236(1–4); 513–520.
Geyer, R., Jambeck, J. R. and Law, K. L. (2017). Production, use, and fate of all plastics ever made - Supplementary Information. Science Advances, 3(7); 19–24.
Gilan, I., Hadar, Y. and Sivan, A. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol., 65(1); 97–104.
Ibrahim, D., Bankole, O. C., Ma’aji, S. A., Ohize, E. J. and Abdul, B. K. (2013). Assessment Of The Strength Properties Of Polystyrene Material Used In Building Construction In Mbora District Of Abuja,Nigeria. Int. j. eng. res. dev., 6(12); 80–84.
Konduri, M. K. R., Anupam, K. S., Vivek, J. S. and Narasu, L. M. (2010). Synergistic effect of photo- and chemical treatment on the rate of biodegradation of low density polyethylene by fusarium sp. AF4. Int. j. biotechnol. biochem., 6(2); 157+.
Łabuzek, S., Nowak, B. and Paja̧k, J. (2004). The susceptibility of polyethylene modified with bionolle to biodegradation by filamentous fungi. Pol. J. Environ. Stud., 13(1); 59–68.
Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F. and Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4); 429–442.
Manzur, A., Limón-González, M. and Favela-Torres, E. (2004). Biodegradation of Physicochemically Treated LDPE by a Consortium of Filamentous Fungi. J. Appl. Polym. Sci., 92(1); 265–271.
Mendez, C. R., Vergaray, G., Bejar, V. R. and Cardenas, K. J. (2007). Isolation and characterization of polyethylene-biodegrading mycromycetes. Rev. peru. biol., 13(3); 203-205.
Moharir, R. V. and Kumar, S. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. J. Clean. Prod., 208; 65–76.
Nanda, S., Sahu, S. and Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manag., 14(2); 57-60.
Orhan, Y., Hrenović, J. and Büyükgüngör, H. (2004). Biodegradation of plastic compost bags under controlled soil conditions. Acta Chimica Slovenica, 51(3); 579–588.
Raaman, N., Rajitha, N., Jayshree, A. and Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp . isolated from polythene polluted sites around Chennai. J. Acad. ind. res., 1(6), 313–316. 2012/08 RAAMAN.pdf
Rivard, C., Moens, L., Roberts, K., Brigham, J. and Kelley, S. (1995). Starch esters as biodegradable plastics: Effects of ester group chain length and degree of substitution on anaerobic biodegradation. Enzyme Microb. Technol., 17(9); 848–852.
Ruiz-dueñas, F. J. and Martínez, Á. T. (2009). Review Microbial degradation of lignin : how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb. Biotechnol., 2(2); 164–177.
Sabouraud R., 1892, Ann. Dermatol. Syphil. 3 : 1061.
Salleh, A. B., Musani, R., Basri, M., Ampon, K., Yunus, W. M. Z. and Razak, C. N. A. (1993). Extra- and intra-cellular lipases from a thermophilic Rhizopus oryzae and factors affecting their production. Can. J. Microbiol., 39(10); 978–981.
Sangale, M. K., Shahnawaz, M. and Ade, A. B. (2012). A Review on Biodegradation of Polythene: The Microbial Approach. J. bioremediat. biodegrad., 03(10).
Seymour, R. B. (1989). Polymer science before and after 1899: Notable developments during the lifetime of maurits dekker. J. Macromol. Science.A . , 26(8), 1023–1032.
Shah, A. A., Hasan, F., Hameed, A. and  Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnol. Adv., 26(3); 246–265.
Sigbritt, K., Olle, L. and  Ann-Christine, A. (1988). Biodegradation of Polyethylene and the Influence of Surfactants. Polym. Degrad. Stab., 21; 237–250.
Suseela, M. R., and  Toppo, K. (2007). Algal biofilms on polythene and its possible degradation. Curr. Sci., 92(3), 285–287.
Vimal Kumar, R., Kanna, G. R. and Elumalai, S. (2017). Biodegradation of Polyethylene by Green Photosynthetic Microalgae. J. bioremediat. biodegrad., 08(01).
Yamada-Onodera, K., Mukumoto, H., Katsuyama, Y., Saiganji, A. and Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym. Degrad. Stab., 72; 323–327.