Geochemical Indices for the Assessment of Chemical Contamination Elements in Sediments of the Suches River, Peru

Document Type : Original Research Paper

Authors

1 Escuela de Posgrado, Programa de Doctorado en Ciencia, Tecnología y Medio Ambiente, Universidad Nacional del Altiplano de Puno, Puno, Perú

2 Instituto de Investigación en Metalurgia, Materiales y Medio Ambiente, Universidad Nacional del Altiplano de Puno, Puno, Perú

Abstract

The purpose of this study was to evaluate the concentrations of potentially toxic elements in the Suches river using standardized geochemical indices and to identify the main sources of contamination in the section from the Suches lagoon up to 33.8 km downstream of the effluent river, in the district of Cojata, Puno, Peru. The concentration of Al, Ba, Co, Fe, M, Ni, P, V and Zn in sediments of the Suches river was determined by means of mass spectrometry from October 2019 to February 2020. The values of Co, Fe, Mn, Ni, P and Zn exceeded the base values of contamination according to the general geological references while Al, Ba and V, did not surpass them. The contamination factor showed that the elements Co and Ni revealed a very high level of contamination, while the Zn, a considerable level. The area has an average pollution load index value of 2.24, indicating moderate general pollution. The elements Co, Ni, Al and Zn were within the moderate and extreme classification according to the pollution index. The Spearman's correlation analysis allowed determining the association between Al, Fe, Mn, P and V, which share a natural origin and the accumulation of these elements is due to the effects of weathering and soil erosion. The evaluation of the contamination indices and the correlation confirm that Cobalt, Nickel and Zinc are toxic elements associated with gold mining and agricultural activities.

Keywords


Acosta, J., Rivera, R., Valencia, M., Chirif, H., Huanacuni, D., Rodriguez, I., Villarreal, E., Paico, D. and Santisteban, A. (2009). Memoria Mapa Metalogenético del Perú.
Agah, H. (2021). Ecological risk assessment of heavy metals in sediment, fish, and human hair from Chabahar Bay, Makoran, Iran. Marine Pollution Bulletin, 169(04), 112345. https://doi.org/10.1016/j.marpolbul.2021.112345
Alahabadi, A. and Malvandi, H. (2018). Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran. Marine Pollution Bulletin, 133, 741–749. https://doi.org/10.1016/j.marpolbul.2018.06.030
Alloway, B. J. (1990). Heavy metals in soils. In Heavy metals in soils. https://doi.org/10.1016/s0165-9936(96)90032-1
Alonso Carballo, H. (1979). Cobalto, Niquel y Zinc en piritas y calcopiritas de algunos yacimientos cupriferos en el norte de Chile. Segundo Congreso Geologico Chileno, 6–11.
Alonso, D. L., Perez, R., Okio, C. K. Y. A. and Castillo, E. (2020). Assessment of mining activity on arsenic contamination in surface water and sediments in southwestern area of Santurban paramo, Colombia. Journal of environmental management, 264. https://doi.org/10.1016/j.jenvman.2020.110478
ANA. (2014). Inventario de glaciares y lagunas.
Buscaroli, A., Zannoni, D. and Dinelli, E. (2021). Spatial distribution of elements in near surface sediments as a consequence of sediment origin and anthropogenic activities in a coastal area in northern Italy. CATENA, 196(November 2019), 104842.
https://doi.org/10.1016/j.catena.2020.104842
Canadian Council of Ministers of the Environment. (1998). Sediment Quality Guidelines for the Protection of Aquatic Life. 1998, 1998.
Chau, Y. K. and Kulikovsky-Cordeiro, O. T. (1995). Occurrence of nickel in the Canadian environment. Environmental Reviews, 3(1), 95–120. https://doi.org/10.1139/a95-004
Copaja, S. V., Mauro, L., Vega-retter, C. and Véliz, D. (2020). Adsorption-desorption of trace elements in sediments of the maipo river basin. Chilean Chemical Society, 2, 4778–4783.
Copaja, S. V. and Muñoz, F. J. (2018). Heavy metals concentration in sediment of lluta river basin. Journal of the Chilean Chemical Society, 63(1), 3878–3883. https://doi.org/10.4067/s0717-97072018000103878
de Souza, A. M., Rocha, D. S., Guerra, J. V., Cunha, B. A., Martins, M. V. A. and Geraldes, M. C. (2021). Metal concentrations in marine sediments of the Rio de Janeiro Coast (Brazil): A proposal to establish new acceptable levels of contamination. Marine Pollution Bulletin, 165(February), 112113. https://doi.org/10.1016/j.marpolbul.2021.112113
Dirección Regional Agraria de Puno (DRAP). (2014). Sintesis Agraria.
Donaires Flores, T. (2017). Modeling of Suches River Contamination Using Water Quality Indexs, Puno - Peru. Weber Earth Science & Environmental Engineering, 3(1), 1–8.
El-Said, G. F., Draz, S. E. O., El-Sadaawy, M. M. and Moneer, A. A. (2014). Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. Journal of Environmental Science and Health, Part A, 49(9), 1029–1044.
https://doi.org/10.1080/10934529.2014.894853
EPA 3050B. (1996). Acid Digestion of Sediments, Sludges, and Soils.
https://doi.org/10.18907/jjsre.18.7_723_2
Farkas, A., Erratico, C. and Viganò, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68(4), 761–768. https://doi.org/10.1016/j.chemosphere.2006.12.099
Fashola, M., Ngole-Jeme, V. and Babalola, O. (2016). Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. International Journal of Environmental Research and Public Health, 13(11), 1047.
https://doi.org/10.3390/ijerph13111047
Fernández, M. T. (2007). Fósforo: amigo o enemigo. ICIDCA : Sobre Los Derivados de La Caña de Azúcar, 41(2), 51–57.
Gammons, C. H., Slotton, D. G., Gerbrandt, B., Weight, W., Young, C. A., McNearny, R. L., Cámac, E., Calderón, R. and Tapia, H. (2006). Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru. Science of The Total Environment, 368(2–3), 637–648. https://doi.org/10.1016/J.SCITOTENV.2005.09.076
Gobierno Regional de Puno. (2015). Informe final del área de geología Región Puno. Proyecto “Desarrollo de Capacidades Para El Ordenamiento Territorial de La Región Puno.” http://siar.minam.gob.pe/puno/sites/default/files/archivos/public/docs/memoria_descriptiva_geologia.pdf
Gobierno Regional de Puno (GRP). (2015). Informe final del área de geología region Puno.
Griffith, E. J., Ponnamperuma, C. and Gabel, N. W. (1977). Phosphorus, a key to life on the primitive earth. Origins Life Evol Biosphere, 8, 71–85.
Hakanson, L. (1980). An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
Hasimuna, O. J., Chibesa, M., Ellender, B. R. and Maulu, S. (2021). Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Scientific African, 12, e00822.
https://doi.org/10.1016/j.sciaf.2021.e00822
Haxel, G. B., Boore, S. and Maynfield, S. (2015). US geological survey. Fact Sheet 087-02. Rare earth elements - critical resources for high technology. https://pubs.usgs.gov/fs/2002/fs087-02/fs087-02.pdf
Haynes, D., Müller, J. and Carter, S. (2000). Pesticide and herbicide residues in sediments and seagrasses from the Great Barrier Reef World Heritage Area and Queensland Coast. Marine Pollution Bulletin, 41(7–12), 279–287. https://doi.org/10.1016/S0025-326X(00)00097-7
Iltis, A., Carmouze, J. and Lemoalle, J. (1991). El Lago Titicaca, síntesis del conocimiento limnológico actual. 107–114.
INGEMMET. (2009). Inventario y situación legal de las operaciones y concesiones mineras ubicadas en la cuenca del río suches (perú - bolivia), implementación de las actividades conducentes a la construcciión de pozas de sedimentación.
Kang, S., Zhang, Y., Zhang, Q., Wang, X., Dong, Z., Li, C., Wang, C., Chen, P. and Rawat, B. (2019). Chemical components and distributions in glaciers of the Third Pole. In Water Quality in the Third Pole: The Roles of Climate Change and Human Activities. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816489-1.00003-7
Karbassi, A. R., Nasrabadi, T. and Modabberi, S. (2014). Pollution with metals ( As , Sb , Hg , Zn ) in agricultural soil located close to zarshuran gold mine , Iran SOIL LOCATED CLOSE TO ZARSHURAN GOLD MINE , IRAN. June. https://doi.org/10.30638/eemj.2014.014
Karbassi, S., Malek, M., Shahriari, T. and Zahed, M. A. (2016). Uptake of metals by plants in urban areas. International Journal of Environmental Science and Technology, 13(12), 2847–2854. https://doi.org/10.1007/s13762-016-1110-4
Karbassi, S., Nasrabadi, T. and Shahriari, T. (2016). Metallic pollution of soil in the vicinity of National Iranian Lead and Zinc (NILZ) Company. Environmental Earth Sciences, 75(22). https://doi.org/10.1007/s12665-016-6244-7
King, O., Quincey, D. J., Carrivick, J. L. and Rowan, A. V. (2017). Spatial variability in mass loss of glaciers in the everest region, central Himalayas, between 2000 and 2015. Cryosphere, 11(1), 407–426. https://doi.org/10.5194/tc-11-407-2017
Krika, A. and Krika, F. (2018). Assessment of Heavy Metals Pollution in Water and Sediments of Djendjen River, North Eastern Algeria. 4(3), 495–502.
https://doi.org/10.22059/poll.2018.249394.367
Kusin, F. M., Awang, N. H. C., Hasan, S. N. M. S., Rahim, H. A. A., Azmin, N., Jusop, S. and Kim, K.-W. (2019a). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. CATENA, 183. https://doi.org/10.1016/j.catena.2019.104229
Kusin, F. M., Awang, N. H. C., Hasan, S. N. M. S., Rahim, H. A. A., Azmin, N., Jusop, S. and Kim, K.-W. (2019b). Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks. Catena, 183. https://doi.org/10.1016/j.catena.2019.104229
Li, M., Zhang, Q., Sun, X., Karki, K., Zeng, C., Pandey, A., Rawat, B. and Zhang, F. (2020). Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: Distribution, source identification and pollution assessment. Chemosphere, 244, 125410.
https://doi.org/10.1016/j.chemosphere.2019.125410
Londoño Franco, L. F., Londoño Muñoz, P. T. and Muñoz Garcia, F. G. (2016). Los riesgos de los metales pesados en la salud humana y animal. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 14(2), 145. https://doi.org/10.18684/BSAA(14)145-153
Malone, A., Smith, N. M. and Zeballos, E. (2021). Geoforum Coexistence and conflict between artisanal mining , fishing , and farming in a Peruvian boomtown. Geoforum, 120(January), 142–154. https://doi.org/10.1016/j.geoforum.2021.01.012
Mandeng, E. P. B., Bidjeck, L. M. B., Bessa, A. Z. E., Ntomb, Y. D., Wadjou, J. W., Doumo, E. P. E. and Dieudonné, L. B. (2019). Contamination and risk assessment of heavy metals, and uranium of sediments in two watersheds in Abiete-Toko gold district, Southern Cameroon. Heliyon, 5(10). https://doi.org/10.1016/j.heliyon.2019.e02591
Mendoza, E. O., Custodio, M., Ascensión, J. and Bastos, M. C. (2020). Heavy Metals in Soils from High Andean Zones and Potential Ecological Risk Assessment in Peru’s Central Andes. Journal of Ecological Engineering, 21(8), 108–119. https://doi.org/10.12911/22998993/127094
MINAGRI. (2018). Reglamento de clasificación de tierras por su capacidad de uso mayor. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
MINAM. (2019). Mapa Nacional de Ecosistemas del Perú - Memoria Descriptiva. Ministerio Del Ambiente, 1–119.
MINAM PERÚ. (2014). Guía para el muestreo de suelos.
http://www.minam.gob.pe/calidadambiental/wp-content/uploads/sites/22/2013/10/GUIA-PARA-EL-MUESTREO-DE-SUELOS-final.pdf
MINEM. Ministerios de Energía y Minas. Atlas de Minería y Energía en el Perú (2001).
Ministerio del Medio Ambiente y Agua. (2019). VI Monitoreo Binacional de calidad y cantidad hídrica de la Cuenca del Rio Suches. https://uob-tdps.gob.bo/documentacion/5.1.4_UOB.-InformeTecnico-VIMonitoreoBinacionaldecalidadycantidadhidricaRioSuchesoctubre-2019.pdf
Mulholland, D. S., Boaventura, G. R. and Araujo, D. F. (2012). Geological and anthropogenic influences on sediment metal composition in the upper Paracatu River Basin, Brazil. Environmental earth sciences, 67(5), 1307–1317. https://doi.org/10.1007/s12665-012-1574-6
Nasrabadi, T., Nabi Bidhendi, G., Karbassi, A. and Mehrdadi, N. (2010). Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environmental Monitoring and Assessment, 171(1–4), 395–410. https://doi.org/10.1007/s10661-009-1286-x
Nguyen, T. T. H., Zhang, W., Li, Z., Li, J., Ge, C., Liu, J., Bai, X., Feng, H. and Yu, L. (2016). Assessment of heavy metal pollution in Red River surface sediments, Vietnam. Marine Pollution Bulletin, 113(1–2), 513–519. https://doi.org/10.1016/j.marpolbul.2016.08.030
Organismen, N. and Ausbreitungswege, I. (1974). in Flüssen und Seen (Vol. 1974, Issue 44).
Paredes, M. (2016). The glocalization of mining conflict: Cases from Peru. Extractive Industries and Society, 3(4), 1046–1057. https://doi.org/10.1016/j.exis.2016.08.007
Rügner, H., Schwientek, M., Egner, M. and Grathwohl, P. (2014). Monitoring of event-based mobilization of hydrophobic pollutants in rivers: Calibration of turbidity as a proxy for particle facilitated transport in field and laboratory. Science of the Total Environment, 490, 191–198. https://doi.org/10.1016/j.scitotenv.2014.04.110
Saiful, I., Belal, H., Matin, A. and Shafiqul Islam, S. (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere, 202, 25–32. https://doi.org/10.1016/j.chemosphere.2018.03.077
Salas-Ávila, D., Chaiña-Chura, F. F., Belizario-Quispe, G., Quispe-Mamani, E., Huanqui-Pérez, R., Velarde-Coaquira, E., Bernedo Colca, F., Salas-Mercado, D. and Hermoza-Gutiérrez, M. (2021). Evaluación de metales pesados y comportamiento social asociados con la calidad del agua en el río Suches, Puno, Perú. 0, 1–34. https://doi.org/10.24850/j-tyca-2021-06-04
Salehi, F., Abdoli, M. A. and Baghdadi, M. (2014). Sources of Cu, V, Cd, Cr, Mn, Zn, Co, Ni, Pb, Ca and Fe in Soil of Aradkooh landfill. International Journal of Environmental Research, 8(3), 543–550. https://doi.org/10.22059/ijer.2014.748
Salomons, W. and Stigliani, W. (1995). Biogeodynamics of Pollutants in Soils and Sediments. In Wim Salomons & W. M. Stigliani (Eds.), Biogeodynamics of Pollutants in Soils and Sediments. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-79418-6
Santos-Francés, F., Martínez-Graña, A., Alonso, P. and García, A. (2017). Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the andes mountain range (Cajamarca-Huancavelica, Peru). International Journal of Environmental Research and Public Health, 14(8), 1–22.
https://doi.org/10.3390/ijerph14080859
Santos-Francés, F., Martínez-Graña, A., Rojo, P. A. and Sánchez, A. G. (2017). Geochemical background and baseline values determination and spatial distribution of heavy metal pollution in soils of the andes mountain range (Cajamarca-Huancavelica, Peru). International Journal of Environmental Research and Public Health, 14(8). https://doi.org/10.3390/ijerph14080859
Shen, T., Tang, Y., Li, Y. J., Liu, Y. and Hu, H. (2020). An experimental study about the effects of phosphorus loading in river sediment on the transport of lead and cadmium at sediment-water interface. Science of the Total Environment, 720, 137535.
https://doi.org/10.1016/j.scitotenv.2020.137535
Sinex, S. A. and Wright, D. A. (1988). Distribution of trace metals in the sediments and biota of Chesapeake Bay. Marine Pollution Bulletin, 19(9), 425–431. https://doi.org/10.1016/0025-326X(88)90397-9
Singh, K., Hasnain, I. and Banerjee, K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River – a tributary of the lower Ganga ,. 39(November).
Singh, K. P., Malik, A., Sinha, S., Singh, V. K. and Murthy, R. C. (2005). In sediments of gomti river ( india ) using principal component analysis. 321–341.
Siqueiros-Beltrones, D. A., Argumedo-Hernández, U., Murillo-Jiménez, J. M. and Marmolejo-Rodríguez, A. J. (2014). Diversidad de diatomeas bentónicas marinas en un ambiente ligeramente enriquecido con elementos potencialmente tóxicos Diversity of benthic marine diatoms in an environment lightly enriched with potentially toxic elements. Revista Mexicana de Biodiversidad, 85(4), 1065–1085. https://doi.org/10.7550/rmb.43748
Su, C., Jiang, L. and Zhang, W. (2014). A review on heavy metal contamination in the soil worldwide : Situation , impact and remediation techniques. 3(2), 24–38.
Tapia, J., Murray, J., Ormachea, M., Tirado, N. and Nordstrom, D. K. (2019). Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. Science of the Total Environment, 678, 309–325.
https://doi.org/10.1016/j.scitotenv.2019.04.084
Team, R. C. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Tomlinson, D. L., Wilson, J. G., Harris, C. R. and Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1–4), 566–575. https://doi.org/10.1007/BF02414780
Turekian, K. K., Haven, N., Hans, K. and Universitat, W. M. Der. (1961). Dept. Geology, Yale University, New Haven, Conn. KARL HANS WEDEPOHL Mineralogische-Institut der Universitat, Gottingen, Germany Distribution of the Elements in Some Major Units of the Earth’s Crust. America, February, 175–192.
Underwood, E. J. and Suttle, N. F. (1999). The Mineral Nutrition of Livestock 3rd Edition. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9).
Villegas, K. S., Alfonso, P., Higueras, P., Palacios, S., Esbrí, J. M. and García-Noguero, E. M. (2012). Environmental pollution produced by gold artisanal mining in the Mapiri river basin, Apolobamba, Bolivia. European Mineralogical Conference Vol. 1, 1, 1.
Wang, Y., Hu, J., Xiong, K., Huang, X. and Duan, S. (2012). Distribution of heavy metals in core sediments from Baihua. 16, 51–58. https://doi.org/10.1016/j.proenv.2012.10.008
Wilson, L. (2018). Spatial Exploration of Trace Metals in Near-Surface Water and Soil in the Bolivian Altiplano.
Yacoub, C., Miralles, N. and Valderrama, C. (2015). Experimental Study of Mobility and Kinetic Characterization of Trace Elements in Contaminated Sediments from a River Basin in Northern Peru. Human and Ecological Risk Assessment, 21(3), 828–844.
https://doi.org/10.1080/10807039.2014.939571
Yan, X., Liu, M., Zhong, J., Guo, J. and Wu, W. (2018). How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability (Switzerland), 10(2), 1–19. https://doi.org/10.3390/su10020338
Yang, H. J., Jeong, H. J., Bong, K. M., Jin, D. R., Kang, T. W., Ryu, H. S., Han, J. H., Yang, W. J., Jung, H., Hwang, S. H. and Na, E. H. (2020). Organic matter and heavy metal in river sediments of southwestern coastal Korea: Spatial distributions, pollution, and ecological risk assessment. Marine Pollution Bulletin, 159(July), 111466. https://doi.org/10.1016/j.marpolbul.2020.111466
Yi, L., Gao, B., Liu, H., Zhang, Y., Du, C. and Li, Y. (2020). Characteristics and assessment of toxic metal contamination in surface water and sediments near a Uranium mining area. International Journal of Environmental Research and Public Health, 17(2).
https://doi.org/10.3390/ijerph17020548
Zhang, H., Wan, Z., Ding, M., Wang, P., Xu, X. and Jiang, Y. (2018). Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Ecotoxicology and Environmental Safety, 165(99), 314–324.
https://doi.org/10.1016/j.ecoenv.2018.09.010
Zuzolo, D., Cicchella, D., Catani, V., Giaccio, L., Guagliardi, I., Esposito, L. and De Vivo, B. (2017). Assessment of potentially harmful elements pollution in the Calore River basin (Southern Italy). Environmental Geochemistry and Health, 39(3), 531–548. https://doi.org/10.1007/s10653-016-9832-2