Screening and Absolute Quantification of a β-lactamase Resistance Gene NDM-1 in Lake Sediment

Document Type : Original Research Paper


Indian Institute of Technology Hyderabad


New Delhi Metallo-β-lactamase-1(NDM-1) is an enzyme that hydrolyzes a wide range of β-lactams antibiotics, including carbapenems. The presence of the NDM-1 inhibits the potential of β–lactam antibiotics in treating infections caused by bacterial strains carrying such resistances, thus leaving minimal treatment options available. Due to this, the rapid distribution of NDM-1 harboring bacteria accounts for a significant public health menace worldwide. These bacteria have been detected in clinical specimens and environmental compartments where bacterial infections are ubiquitous. In this study, identification and absolute quantification of NDM-1 in sixteen lake sediment samples collected in and around Hyderabad, India, was carried out using a real-time quantitative polymerase chain reaction (qPCR), and the results were expressed in gene copy number/ng (nanogram) of template DNA. Thirteen samples (out of sixteen) displayed a positive signal for NDM-1 during the qPCR analysis with the highest gene copy number/ng of template DNA (71.8) being observed in the Amberpet STP. Three samples, samples from Durgamcheru lake, Kandi lake, and Singur dam, were negative for the NDM-1 during the qPCR analysis. Hierarchical clustering analysis was performed to categorize the sampling location into different clusters based on pollution sources and the observed results were expressed in the form of a dendrogram.


Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K. A., Davies, J. and Handelsman, J. (2010).  Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4):251–259.
Andersson, D. I. and Hughes D. (2014). Microbiological effects of sub-lethal levels of antibiotics. Nat Rev Microbiol 12:465– 478.
Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. and Larsson, D. G. J. (2014).  Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol., 5, 648.
Bennett, P. M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. British journal of pharmacology, 153(S1), S347-S357.
Berrazeg, M., Diene, S., Medjahed, L., Parola, P., Drissi, M., Raoult, D. and Rolain, J. (2014). New Delhi Metallo-beta-lactamase around the world: an eReview using Google Maps. Euro Surveill., 19, 20809.
Bielen, A., Šimatović, A., Kosić-Vukšić, J., Senta, I., Ahel, M., Babić, S., Jurina, T., González Plaza, J. J., Milaković, M. and Udiković-Kolić, N. (2017).  Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res., 126, 79–87.
Chang, H., Wan, Y., Wu, S., Fan, Z. and Hu, J. (2011). Occurrence of androgens and progestogens in wastewater treatment plants and receiving river waters: comparison to estrogens. Water Research, 45(2), 732-740.
Chen, Q. L., An, X. L., Li, H., Su, J. Q., Ma, Y. B. and Zhu, Y. G. (2016). Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil.  Environ Int., 92, 1-10.
Chen, Y., Su, J-Q and Zhang, J., et al. (2019). High-throughput profiling of antibiotic resistance gene dynamic in a drinking water river-reservoir system. Water Research, 149, 179-189.
Czekalski, N., Díez, E. G., and Bürgmann, H. (2014).  Wastewater as a point source of antibiotic-resistance genes in the sediment of a freshwater lake. The ISME Journal, 8(7), 1381-1390.
Devarajan, N., Laffite, A., Ngelikoto, P., Elongo, V., Prabakar, K. and Mubedi, J. I., et al.  (2015a). Hospital and urban effluent waters as a source of accumulation of toxic metals in the sediment receiving system of the Cauvery River, Tiruchirappalli, Tamil Nadu, India. Environmental science and pollution research, 22, 12941-12950.
Devarajan, N., Laffite, A., Graham, N. D., Meijer, M., Prabakar, K. and Mubedi, J. I., et al. (2015b). Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in central Europe. Environ Sci Technol., 49(11), 6528–6537.
Eramo, A.; Medina, W. R. M. and Fahrenfeld, N. L. (2020). Factors associated with elevated levels of antibiotic resistance genes in sewer sediments and wastewater. Environ. Sci.: Water Res. Technol., 6, 1697-1710.
Flach, C. F., Johnning, A., Nilsson, I., Smalla, K., Kristiansson, E. and Larsson, D. G. J. (2015). Isolation of novel Inc A/C and Inc N fluoroquinolone resistance plasmids from an antibiotic-polluted lake. J. Antimicrob. Chemother., 70, 2709–2717.
Gothwal, R. and Shashidhar, T. (2015). Antibiotic pollution in the environment: a review. Clean–Soil, Air, Water, 43(4), 479-489.
Gwenzi, W., Musiyiwa, K. and Mangori, L. (2018). Sources, behaviour, and health risks of antimicrobial resistance genes in wastewaters: A hotspot reservoir. Journal of Environmental Chemical Engineering, 102220.
Haller, L., Pote, J., Loizeau, J.L., and Wildi, W. (2009). Distribution and survival of fecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Ecol Indic., 9(3), 540–547.
Ip, C. C. M., Li, X. D., Zhang, G. S., Farmer, J. G., Wai, O. W. H. and Li, Y. S. (2004). Over one hundred years of trace metal fluxes in the sediments of the Pearl River Estuary, South China. Environ Pollut., 132(1), 157–172.
Islam, M. A., Talukdar, P. K., Hoque, A., Huq, M., Nabi, A., Ahmed, D., Talukder, K. A., Pietroni, M. A., Hays, J. P., Cravioto, A. and Endtz, H. P. (2012). Emergence of multidrug-resistant NDM-1-producing Gram-negative bacteria in Bangladesh. Eur J Clin Microbiol Infect Dis., 31, 2593–2600.
Islam, M. A., Nabi, A., Rahman, M., Islam, M., Ahmed, D., Faruque, A. S., Hossain, A., van Belkum, A. and Endtz, H. P. (2014). Prevalence of fecal carriage of NDM-1- producing bacteria among patients with diarrhoea in Bangladesh. J Med Microbiol., 63, 620–622.
Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E. and Barceló, D. (2012).  Emerging Organic Contaminants in Groundwater in Spain: A Review of Sources, Recent Occurrence, and Fate in a European Context. Sci. Total Environ., 440, 82–94.
Khan, A.U., Maryam, L. and Zarrilli, R. (2017). Structure, Genetics, and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol., 17101.
Kummerer, K. (2004). Resistance in the environment. J Antimicrob Chemother. 54(2), 311–320.
Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. Journal of environmental management, 90(8), 2354-2366.
Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., Bagaria, J., Butt, F. and Balakrishnan, R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the U.K.: a molecular, biological, and epidemiological study. Lancet Infect Dis., 10, 597–602. 
Lara, T. M., Burch, T.R., McNamar, P. J., Tan, D.T., Yan, M. and Eichmiller, J. J. (2011). Tertiary-Treated Municipal Wastewater is a Significant Point Source of Antibiotic Resistance Genes into Duluth-Superior Harbor. Environ Sci Technol., 45, 9543-9549.
Laxminarayan, R. and Chaudhury, R. R. (2016). Antibiotic resistance in India: drivers and opportunities for action. PLOS Medicine, 13(3), e1001974.
Lübbert, C., Baars, C., Dayakar, A., Lippmann, N., Rodloff, A. C., Kinzig, M. and Sörgel, F. (2017). Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with the dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection, 45(4), 479-491.
Martínez-Martínez, L. and González-López, J. J. (2014). Carbapenemases in Enterobacteriaceae: types and molecular epidemiology. Enfermedades infecciosas y microbiologia clinica, 32, 4-9.
Mwanamoki, P.M., Devarajan, N., Thevenon, F., Atibu, E. K., Tshibanda, J.B. and Ngelinkoto, P., et al. (2014). Assessment of pathogenic bacteria in water and sediment from a water reservoir under tropical conditions (Lake MaVallee), Kinshasa Democratic Republic of Congo. Environmental monitoring and assessment,186(10), 6821–6830.
Pei, R., Cha, J., Carlson, K. H. and Pruden, A.  (2007). Response of antibiotic resistance genes (ARG) to biological treatment in dairy lagoon water. Environ. Sci. Technol., 41(14), 5108-5113.
Perry, J. D., Naqvi, S. H., Mirza, I. A., Alizai, S. A., Hussain, A., Ghirardi, S., Orenga, S., Wilkinson, K., Woodford, N., Zhang, J., Livermore, D. M., Abbasi, S. A. and Raza, M. W. (2011). Prevalence of fecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother., 66, 2288 –2294.
Pote, J., Haller, L., Loizeau, J. L., Bravo, A.G., Sastre, V. and Wildi, W. (2008).  Effects of a sewage treatment plant outlet pipe extension on the distribution of contaminants in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Bioresource Technol., 99(15), 7122–7131.
Pote, J., Bravo, A. G., Mavingui, P., Ariztegui, D. and Wildi, W. (2010). Evaluation of quantitative recovery of bacterial cells and DNA from different lake sediments by Nycodenz density gradient centrifugation. Ecol Indic., 10(2), 234–240.
Rashmi, H. B., Bharti, S. K., Gogoi, M., Devi, S., Ganguly, A. and Ganguly, S. (2017). Antibiotic Resistance: Role of Fruits and Vegetables in the Food Basket. Int. J. Pure App. Biosci., 5 (4), 169-173.
Rather, I. A., Kim, B. C., Bajpai, V. K. and Park, Y. H. (2017). Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi journal of biological sciences, 24(4), 808-812.
Roske, K., Sachse, R., Scheerer, C. and Roske, I. (2012). Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Syst Appl Microbiol., 35, 35–44.
Spindler, A., Otton, L. M., Fuentefria, D.B. and Corcao, G. (2012). Beta-lactams resistance and presence of class 1 integron in Pseudomonas spp. isolated from untreated hospital effluents in Brazil. Antonie van Leeuwenhoek, 102(1), 73–81.
Thevenon, F., Adatte, T., Wildi, W. and Pote, J. (2012). Antibiotic-resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). Chemosphere, 86(5), 468–476.
Toleman, M. A., Bugert, J. J. and Nizam, S. A. (2012). Extensively drug-resistant New Delhi Metallo-β-lactamase-encoding bacteria in the environment, Dhaka, Bangladesh. Emerg Infect Dis., 21, 1027–1030.
Von Wintersdorff, C. J., Penders, J., van Niekerk, J. M., Mills, N. D., Majumder, S., van Alphen, L. B. and Wolffs, P. F. (2016). Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in microbiology, 7, 173.
Walsh, T. R. and Toleman, M. A. (2011). The new medical challenge: why NDM-1? Why Indian? Expert Rev Anti Infect Ther., 9, 137–141.
Walsh, T. R., Weeks, J., Livermore, D. M. and Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis., 11, 355–362.
World Health Organization. (2004). The World health report: 2004: changing history. World Health Organization.
Xu, C., Zhang, Y., Marrs, C. F., Ye, W., Simon, C., Foxman, B. and Nriagu, J. (2009). Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol., 75(17), 5714-5718.
Yang, J., Jiang, H. C., Liu, W. and Zhang, G. J. (2016). Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of Western China. Front Microbiol., 7, 1782.
Zhang, L., Zhao, T., Wang, Q., Li, L., Shen, T. and Gao, G. (2019). Bacterial community composition in aquatic and sediment samples with spatiotemporal dynamics in large, shallow, eutrophic Lake Chaohu, China. Journal of Freshwater Ecology, 34(1), 575-589.