Review on the use of Microalgae Biomass for Bioplastics Synthesis: A Sustainable and Green approach to control Plastic Pollution

Document Type : Review Paper

Authors

1 Department of Environmental Science, Maharshi Dayanand University, Rohtak, India

2 Department of Environmental Science, M.D. University Rohtak, India

3 Department of Environmental Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India

4 Department of Environmental Science Maharshi Dayanand University Rohtak

Abstract

Worldwide there is an immense demand for plastic material that results in “white pollution”. Petrochemical-based plastic is used all over the world which leads to adverse impacts on every sphere of the earth. However, many steps have been taken to control this plastic pollution globally, such as chemical treatments, plastic waste incineration, sanitary landfilling, and 7 R programs. Still, plastic pollution is one of the major international problems. Non-biodegradable plastic would not eradicate from our environment until we have an economically feasible and more biodegradable substitute. In recent years algae, especially microalgae, have got attention worldwide, owing to their various applications. Microalgae is one of the sustainable ways of bioplastic synthesis as during cultivation it also purifies wastewater. This review paper has summarized various species of microalgae used for the synthesis of bioplastic, their cultivation system, and methods for bioplastic production by using microalgae biomass, followed by multiple challenges, solutions, and future prospects.

Keywords


  1. Anthony, R. and Sims, R. (2013). Cationic starch for microalgae and total phosphorus removal from wastewater. J. Appl. Polym. Sci., 130(4), 2572-2578.

    Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J. and Le, T. A. T. (2021). Environmental impact of bioplastic use: A review. Heliyon, 7(9), 7918.

    Banerjee, S. and Ramaswamy, S. (2017). Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds. Algal res., 26, 330-340.

    Beckstrom, B.D. (2019). Bioplastic Production from Microalgae with Fuel Co-Products: A Techno-Economic and Life-Cycle Assessment. Dissertation, Colorado State University.

    Brennan, L. and Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 14(2), 557-577.

    Bulota, M. and Budtova, T. (2015). PLA/algae composites: morphology and mechanical properties. Composites Part A: Appl. Sci. Manuf., 73, 109-115.

    Bussa, M., Eisen, A., Zollfrank, C. and Röder, H. (2019). Life cycle assessment of microalgae products: State of the art and their potential for the production of polylactid acid.  J. Clean. Prod., 213, 1299-1312.

    Casabianca, S., Capellacci, S., Penna, A., Cangiotti, M., Fattori, A., Corsi, I., ... and Carloni, R. (2020). Physical interactions between marine phytoplankton and PET plastics in seawater. Chemosphere, 238, 124560.

    Castro, Y. A., Ellis, J. T., Miller, C. D. and Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl. Energy, 140, 14-19.

    Chen, P. H. and Quinn, J. C. (2021). Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment. Appl. Energy, 289, 116613.

    Chhandama, M. V. L., Satyan, K. B., Changmai, B., Vanlalveni, C. and Rokhum, S. L. (2021). Microalgae as a feedstock for the production of biodiesel: A review. Bioresour. Technol. Rep., 15, 100771.

    Ciapponi, R., Turri, S. and Levi, M. (2019). Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials, 12(9), 1476.  

    Cinar, O. S., Chong, Z. K., Kucuker, M. A., Wieczorek, N., Cengiz, U. and Kuchta, K. (2020). Bioplastic production from microalgae: a review. Int. J. Environ. Res. Public Health , 17(11), 3842.

    Cleetus, C., Thomas, S. and Varghese, S. (2013). Synthesis of petroleum-based fuel from waste plastics and performance analysis in a CI engine. J. Energy., 2013, 10.

    De Stephanis, R., Giménez, J., Carpinelli, E., Gutierrez-Exposito, C. and Cañadas, A. (2013). As main meal for sperm whales: plastics debris. Mar. Pollut. Bull., 69, 206-214 .  

    Debowski, M., Zielinski, M., Krzemieniewski, M., Dudek, M. and Grala, A. (2012). Microalgae–cultivation methods. Pol. J. Nat. Sci., 2(27).

    Dianursanti, Khalis, S.A. (2018). The Effect of Compatibilizer Addition on Chlorella Vulgaris Microalgae Utilization as a Mixture for Bioplastic. E3S Web of Conferences (Vol. 67, p. 03047). EDP Sciences.

    Dianursanti, Noviasari, C., Windiani, L. and Gozan, M. (2019, April). Effect of compatibilizer addition in Spirulina platensis based bioplastic production. In AIP Conference Proceedings (Vol. 2092, No. 1, p. 030012). AIP Publishing LLC.

    EB (2018). Fact Sheet, European Bioplastics: What are the bioplastics? European Bioplastics (Electronics Version). Retrieved 29 November 2021 from https://www.european-bioplastics.org/

    1. E (2021).Bioplastics Market Development Update 2021. Euopean Bioplastics, nova-Institute (Electronic Version). https://www.european-bioplastics.org/market/

    Ellis, J. T., Hengge, N. N., Sims, R. C. and Miller, C. D. (2012). Acetone, butanol, and ethanol production from wastewater algae. Bioresour. Technol., 111, 491-495.

    Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., ... and Kuppam, C. (2018). Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renew. Sustain. Energy Rev., 94, 49-68.

    Fabra, M. J., Martínez-Sanz, M., Gómez-Mascaraque, L. G., Gavara, R. and López-Rubio, A. (2018). Structural and physicochemical characterization of thermoplastic corn starch films containing microalgae. Carbohydr. Polym., 186, 184-191.

    Gandini, A. and Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Prog. Polym. Sci., 48, 1-39.

    Gerardo, M. L., Van Den Hende, S., Vervaeren, H., Coward, T. and Skill, S. C. (2015). Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Res., 11, 248-262.

    Hempel, F., Bozarth, A.S., Lindenkamp, N., Klingl, A., Zauner, S., Linne, U., Steinbüchel, A. and Maier, U.G. (2011). Microalgae as bioreactors for bioplastic production. Microb. Cell Fact., 10(1), 1-6.

    Huo, Y. X., Cho, K. M., Rivera, J. G. L., Monte, E., Shen, C. R., Yan, Y. and Liao, J. C. (2011). Conversion of proteins into biofuels by engineering nitrogen flux. Nat. Biotechnol., 29(4), 346-351.

    Johnsson, N. and Steuer, F. (2018). Bioplastic Material from Microalgae: Extraction of Starch and PHA from Microalgae to Create a Bioplastic Material. Dissertation, KTH Royal Institute of Technology: Stockholm, Sweden.

    Kesaano, M. and Sims, R. C. (2014). Algal biofilm based technology for wastewater treatment. Algal Res., 5, 231-240. 

    Khanna, S. and Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process. Biochem., 40(2), 607-619. 

    Knuckey, R.M., Brown, M.R., Robert, R. and Frampton, D.M.F. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac. Eng., 35, 300–313

    Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y. and Chang, J. S. (2021). Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere, 271, 129800.

    Li, G., Zhang, J., Li, H., Hu, R., Yao, X., Liu, Y., Zhou, y. and Lyu, T. (2021). Towards high-quality biodiesel production from microalgae using original and anaerobically-digested livestock wastewater. Chemosphere, 273, 128578.

    Madadi, R., Maljaee, H., Serafim, L. S. and Ventura, S. P. (2021). Microalgae as contributors to produce biopolymers. Mar. Drugs, 19(8), 466.

    Marichelvam, M. K., Jawaid, M. and Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32.

    Mathimani, T. and Pugazhendhi, A. (2019). Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal. Agric. Biotechnol., 17, 326-330.

    Monshupanee, T., Nimdach, P. and Incharoensakdi, A. (2016). Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci. Rep. , 6, 37121.

    Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H. and AbdulGhani, A. (2022). Biodegradable plastic applications towards sustainability: A recent innovations in the green product. Clea. Eng. Tech., 100404.

    Musa, M., Ayoko, G. A., Ward, A., Rösch, C., Brown, R. J. and Rainey, T. J. (2019). Factors affecting microalgae production for biofuels and the potentials of chemometric methods in assessing and optimizing productivity. Cells, 8(8), 851.

    Onen Cinar, S., Chong, Z. K., Kucuker, M. A., Wieczorek, N., Cengiz, U. and Kuchta, K. (2020). Bioplastic production from microalgae: a review. Int. J. Environ. Res. Public Health, 17(11), 3842.

    Otsuki, T., Zhang, F., Kabeya, H. and Hirotsu, T. (2004). Synthesis and tensile properties of a novel composite of Chlorella and polyethylene. J. Appl. Polym. Sci., 92, 812–816.

    Rahman, A. and Miller, C. D. (2017). Microalgae as a source of bioplastics. (In Rastogi, R. P., Pandey, A. and Madamwar, D., Algal green chemistry (pp. 121-138). Elsevier.)

    Rahman, A., Linton, E., Hatch, A. D., Sims, R. C. and Miller, C. D. (2013). Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J. Biol. Eng., 7(1), 1-9.

    Rahman, A., Putman, R. J., Inan, K., Sal, F. A., Sathish, A., Smith, T., ... and Miller, C. D. (2015). Polyhydroxybutyrate production using a wastewater microalgae based media. Algal res., 8, 95-98.

    Rasul, I., Azeem, F., Siddique, M. H., Muzammil, S., Rasul, A., Munawar, A., Afzal, M., Ali, M.A. and Nadeem, H. (2017). Algae Biotechnology: A Green Light for Engineered Algae. (In Zia, K.M., Zuber, M., Ali, M.) Algae Based Polymers, Blends, and Composites (pp. 301-334). Elsevier.)

    Reddy, R. L., Reddy, V. S. and Gupta, G. A. (2013). Study of bio-plastics as green and sustainable alternative to plastics. Int. J. Emerg. Technol.  Adv. Eng., 3(5), 76-81.

    Rosano, G. L. and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Front. Microbiol., 5, 172.  

    Ross, G., Ross, S. and Tighe, B. J. (2017). Bioplastics: new routes, new products. (In Gilbert, M. (8),  Brydson's Plastics Materials (pp 631-652).Elsevier.)

    Sabathini, H. A., Windiani, L. and Gozan, M. (2018). Mechanical Physicial properties of chlorella-PVA based bioplastic with ultrasonic homogenizer. In E3S Web of Conferences (Vol. 67, p. 03046). EDP Sciences.

    Siddiki, S. Y. A., Mofijur, M., Kumar, P. S., Ahmed, S. F., Inayat, A., Kusumo, F., ... and Mahlia, T. M. I. (2022). Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 307, 121782.

    Singh, R. N. and Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renew. Sustain. Energy Rev., 16(4), 2347-2353.

    Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T. and Shuit, S. H. (2019).  Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev., 115, 109361

    Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S. and Thakur, V. K. (2018). Sustainability of bioplastics: Opportunities and challenges. Curr. Opin. Green Sustainable Chem., 13, 68-75.

    Tibbetts, S.M., Milley, J.E., Lall, S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photo-bioreactors. J. Appl. Phycol., 27, 1109–1119.

    Toro, C., Reddy, M. M., Navia, R., Rivas, M., Misra, M. and Mohanty, A. K. (2013). Characterization and application in biocomposites of residual microalgal biomass generated in third generation biodiesel. J. Polym. Environ., 21(4), 944-951. 

    Torres, S., Navia, R., Campbell Murdy, R., Cooke, P., Misra, M. and Mohanty, A.K. (2015). Green Composites from Residual Microalgae Biomass and Poly (butylene adipate- co -terephthalate): Processing and Plasticization. ACS Sustain. Chem. Eng., 3, 614–624. 

    Wang, K. (2014). Bio-Plastic Potential of Spirulina Microalgae. Dissertation, The University of Georgia, USA.

    Wang, K., Mandal, A., Ayton, E., Hunt, R., Zeller, M. A. and Sharma, S. (2016). Modification of protein rich algal-biomass to form bioplastics and odor removal. (In Dhillon, G. S., Protein byproducts (pp. 107-117). Academic Press.)                          

    WEF (2020). Plastics, the Circular Economy and Global Trade, World Economic Forum Report.http://www3.weforum.org/docs/WEF_Plastics_the_Circular_Economy_and_Global_Trade_2020.pdf

    Yeh, K. L., Chang, J. S. and chen, W. M. (2010). Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP‐31. Eng. Life Sci., 10(3), 201-208.

    Zeller, M. A., Hunt, R., Jones, A. and Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci., 130(5), 3263-3275.

    Zhang, C., Wang, C., Cao, G., Wang, D., Ho, S.H. (2019). A sustainable solution to plastics pollution: An eco-friendly bioplastic film production from high-salt contained Spirulina sp. residues. J. Hazard. Mater., 388, 121773.

    Zhang, F., Endo, T., Kitagawa, R., Kabeya, H. and Hirotsu, T. (2000a). Synthesis and characterization of a novel blend of polypropylene with Chlorella. J. Mater. Chem., 10(12), 2666-2672.

    Zhang, F., Kabeya, H., Kitagawa, R., Hirotsu, T., Yamashita, M. and Otsuki, T. (2000b). An exploratory research of PVC-Chlorella composite material (PCCM) as effective utilization of Chlorella biologically fixing CO2. J. Mater. Sci., 35(10), 2603-2609.

    Zhang, F., Kabeya, H., Kitagawa, R., Hirotsu, T., Yamashita, M. and Otsuki, T. (1999). Preparation and characterization of a novel polyethylene− chlorella composite. Chem. Mater., 11(8), 1952-1956.

    Zhou, N., Zhang, Y., Wu, X., Gong, X. and Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour. Technol., 102(21), 10158-10161. 

    Zhu, L. (2015). Microalgal culture strategies for biofuel production: a review. Biofuels, Bioprod. and Biorefining, 9(6), 801-814.

    Zhu, N., Ye, M., Shi, D. and Chen, M. (2017). Reactive compatibilization of biodegradable poly (butylene succinate)/Spirulina microalgae composites. Macromol. Res., 25(2), 165-171.