Health Risk Assessment of Okadaic Acid and Domoic Acid in Some Edible Bivalves from Hormozgan Province in the North of Persian Gulf

Document Type : Original Research Paper

Authors

1 Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute, Agricultural Resarch, Education and Extension Organization (AREEO), Bandar Abbas, Iran

2 College of Science, Slippery Rock University, PA, 16057, United State

Abstract

The biotoxins can enter the marine food chain, and, accordingly, seafood consumers are also at risk of ingesting toxins from contaminated aquatic animals. Hormozgan Province in the north of Persian Gulf is an area with high industrial and urbanization rising rate. In the present work, the aim was to identify the okadaic acid and domoic acid producers in the coastal waters and to investigate on their accumulated concentrations in edible bivalves in order to assess the consumer’s health risk. Water samples were collected during winter 2018 and summer 2019 from one blank and four stations facing industrial and municipal effluents. Four species of edible bivalves were collected from coastal lines of Hormozgan province, at the lowest tide time. The concentrations of toxins were determined by indirect competitive ELISA method. Pseudonitzschia delicatissima, Nitzschia punges and Nitzschia seriata in the production of domoic acid and Dinophysis caudate, Prorocentrum Lima and Ceratium tripos in the production of okadaic acid were identified. The okadaic acid concentrations ranged from 59.8 ± 2.38 to 121.96 ± 28.25 µg/kg, ranging from 0.85 to 83.59 ± 38.72 for Domoic acid. Among the studied bivalves, Pinctada radiate contained the maximum concentrations of measured toxins. For the first time at Hormozgan Province, the consumption guidelines for domoic and okadaic acid were calculated. The human health risk assessment showed that at present time, the algal consumers from Hormozgan province are not at risk of domoic and okadaic acid toxins.

Keywords


Abott, R.T. and Dance, S. P. (2000). Compendium of seashells. (USA: Odyssey Publishing).
Al-Kandari, M., Al-Yamani, F. and Al-Rifaie, K.  (2009). Marine phytoplankton atlas of Kuwait’s waters. (Kuwait: Kuwait Institute for Scientific Research).
Al-Yamani, F. 2009. Our Arabian Sea. (Kuwait: Kuwait Institute for Scientific Research).
Anderson, DM., Anderson, P. and Bricelj, VM. (2001) Monitoring and management strategies for harmful algal blooms in coastal waters. (France: UNESCO).
Bosch, D., Dance, S. P., Moolenbeek, R. and Oliver, P. G, (1995), Seashells of Eastern Arabia. (Motivate Publishing, London).
Brown, A. R., Lilley, M., Shutler, J., Lowe, C., Artioli, Y., Torres, R., and Tyler, C. R. (2020). Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev. Aquac., 12(3); 1663-1688.
Carmody, E.P., James, K.J. and Kelly, S.S. (1996) Dinophysistoxin-2: the predominant diarrhoetic shellfish toxin in Ireland. Toxicon, 34(3); 351-359.
Carpenter, K. E. and Niem V.H. (Eds.). (1998), FAO species identification guide for fishery purposes; the living marine resources of the Western Central Pacific, Vol. 1.: Seaweeds, corals, bivalves and gastropods. (ROME, FAO).
Contreras, A. M., Marsden, I. D., and Munro, M. H. (2012). Effects of short-term exposure to paralytic shellfish toxins on clearance rates and toxin uptake in five species of New Zealand bivalve. Mar. Freshw. Res., 63(2); 166-174.
Duy, T.N., Lam, P.K.S., Shaw G.R. and Conell, D.W. (2000) Toxicology and risk assessment of freshwater cyanobacteria (blue-green alga) toxins in water. Rev. Environ. Contam. Toxicol., 163; 113-186.
Estevez, P., Castro, D., Pequeño-Valtierra, A., Giraldez, J. and Gago-Martinez, A. (2019). Emerging marine biotoxins in seafood from European coasts: Incidence and analytical challenges. Foods, 8(5); 149.
Fernandez, M.L. (2000). Regulations for marine microalgal toxins: Towards harmonization of methods and limits. Afr. J. Mar. Sci., 22; 339-346.
Gholami, Z., Mortazavi, M. S. and Karbassi, A. (2019). Environmental risk assessment of harmful algal blooms case study: Persian Gulf and Oman Sea located at Hormozgan Province, Iran. Hum. Ecol. Risk Assess., 25(1-2); 271-296.
Hallegraeff, G., Anderson, D.M. and Cembella A.D. (2003). Manual on harmful marine microalgae. (France: UNESCO Publishing).
Hamzehei, S., Bidokhti, A.A. and Mortazavi, M.S. (2012) Analysis of red tide in Strait of Hormuz in 2008-2009 using ocean satellite data. J. Mar. Sci. Eng., 2(4); 225-232.
Hoppenrath, M., Elbrachter, M. and Drebes, G. (2009) Marine phytoplankton (Germany: Schweizerbart Science).
Hormozgan Fisheries Department (2009) Results of aquatic consumption survey in the urban community of Hormozgan province. Hormozgan Fisheries Department, Iran (In Persian).
Hosseinzadeh, S., Daghoghi, H., and Rameshi, H. (2001).  Atlas of the Persian Gulf mollusks (in Persian). (Iran, Iranian Fisheries Research Organization).
Jeffery, B., Barlow, T., Moizer, K., Paul, S. and Boyle, C. (2004). Amnesic shellfish poison. Food Chem. Toxicol., 42(4); 545-557.
Lee, J. S., Yanagi, T., Kenma, R. and Yasumoto, T. (1987). Fluorometric determination of diarrhetic shellfish toxins by high-performance liquid chromatography. Agric. Biol. Chem., 51(3); 877-881.
Lefebvre, K. A. and Robertson, A. (2010). Domoic acid and human exposure risks: a review. Toxicon, 56(2); 218-230.
Mattarozzi, M., Cavazza, A., Calfapietra, A., Cangini, M., Pigozzi, S., Bianchi, F. and Careri, M. (2019). Analytical screening of marine algal toxins for seafood safety assessment in a protected Mediterranean shallow water environment. Food Addit. Contam. Part A, 36(4); 612-624.
Mirza Esmaeili, F., Mortazavi, M. S., Arjomandi, R. and Lahijanian, A. (2020a). A study on red tide risk and basic understanding of fishermen and residents in Bandar Abbas, Hormozgan Province, Iran (Persian Gulf). Iran. J. Fish. Sci., 19(1); 471-487.
Mirza Esmaeili, F., Mortazavi, M. S. and Dehghan Banadaki, A. R. (2020b). An overview of management and monitoring of harmful algal blooms in the northern part of the Persian Gulf and Oman Sea (Hormozgan Province). Environ. Monit. Assess., 192(1); 1-11.
Mohammad Karami, A., Riyahi Bakhtiari, A., Kazemi, A. and Kheirabadi, K. (2014). Assessment of Toxic Metals Concentration using Pearl Oyster,‎ Pinctada radiate, as Bioindicator on the Coast of Persian Gulf, Iran‎. Iran. J. Toxicol., 7(23); 956-961.
Mohebbi-Nozar, S.L., Ismail, W.R. and Zakaria, M.P. (2014) Health risk of PCBs and DDTs in seafood from southern Iran. Hum. Ecol. Risk Assess., 20 (5); 1164-1176.
Mortazavi, MS., Aramideh, A. and Mohebbi, L. (2015) Investigation and determination of marine toxins in the shellfish of Persian Gulf and Oman Sea. Iran. J. Fish. Sci., 24(2); 125-134.
Nguyen, H. N., Smith, M. E., and Swoboda, H. D. (2017). Shellfish Toxicity. (United States: StatPearls Publishing).
Omura T., Iwataki, M., Valeriano M B., Takayama H. and Fukuyo Y. (2012(, Marine phytoplankton of the Western Pacific. (Japan: Kouseisha Kouseikaku Publisher).
Paredes, I., Rietjens, I. M. C. M., Vieites, J. M., and Cabado, A. G. (2011). Update of risk assessments of main marine biotoxins in the European Union. Toxicon, 58(4); 336-354.
Perl, T. M., Bedard, L., Kosatsky, T., Hockin, J. C., Todd, E. C. and Remis, R. S. (1990). An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl. J. Med., 322(25); 1775-1780.
Polikarpov, I., Saburova, M. and Al-Yamani, F. (2020). Decadal changes in diversity and occurrence of microalgal blooms in the NW Arabian/Persian Gulf. Deep Sea Res. Part II Top. Stud. Oceanogr., 179; 104810.
Quilliam, M. and Wright, J. (1995) Methods for diarrhetic shellfish poisons. In: Hallegraeff G, Anderson D, and Cembella A (eds) Manual on harmful marine microalgae, IOC Manuals and Guides # 33 (Paris: UNESCO).
 Ramstad, H., Larsen, S. and Aune, T. (2001). The repeatability of two HPLC methods and the PP2A assay in the quantification of diarrhetic toxins in blue mussels (Mytilus edulis). Toxicon, 39(4); 515-522.
Stabell, OB., Steffenak, I. and Aune, T. (1992) An evolution of the mouse bioassay applied to extracts of diarrhoetic shellfish toxins. Food Chem. Toxicol., 30; 139-144.
Takahashi, T. (2020). Relationship between Algal Blooms and Marine- ecosystem Services. Monitoring Artificial Materials and Microbes in Marine Ecosystems: Interactions and Assessment Methods (Singapore: Bentham Science Publishers).
Takahashi, E.  )2007(, Risk assessment of marine algal toxins on humans and dugongs (PhD thesis), Griffith University, Australia. 
Todd, E. C. (1993). Domoic acid and amnesic shellfish poisoning-a review. J. Food Prot., 56(1); 69-83.
Vale, P., Botelho, M. J., Rodrigues, S. M., Gomes, S. S. and Sampayo, M. A. D. M. (2008). Two decades of marine biotoxin monitoring in bivalves from Portugal (1986–2006): a review of exposure assessment. Harmful Algae, 7(1); 11-25.
Vale, P. and Sampayo, M.A. (2002) Evaluation of extraction methods for analysis of domoic acid in naturally contaminated shellfish from Portugal. Harmful Algal, 1; 127-136.
Van Dolah, F. M. (2000). Diversity of marine and freshwater algal toxins. (United States: CRC Press).
WoRMS, 2020. 15-6-2020, (https://www.marinespecies.org/about.php).
Yasumoto, T., Oshima, Y. and Yamaguchi, M. (1978) Occurrence of a new type of shellfish poisoning in the Tohoku district. Bull. Japan. Soc. Sci. Fish, 44 (11); 129-1255.
Young, N., Sharpe, R. A., Barciela, R., Nichols, G., Davidson, K., Berdalet, E. and Fleming, L. E. (2020). Marine harmful algal blooms and human health: A systematic scoping review. Harmful Algae, 98; 101901.