Evaluation of Heavy Metal Pollution of Snow and Groundwater on the Territory of Suburban Community Garden Plots of the Arkhangelsk Agglomeration (Northwest Russia)

Document Type : Original Research Paper

Authors

N. Laverov Federal Centre for Integrated Arctic Research of Russian Academy of Sciences, 109 Severnoj Dviny Emb., P.O.Box 163000, Arkhangelsk, Russia

Abstract

The article presents the results of a study of heavy metals in snow and groundwater within the industrially developed Arkhangelsk agglomeration, which is the largest among urban formations in the Arctic zone of Russia. This article describes the results of research on the territories of three suburban community garden plots used by residents of the cities of the Arkhangelsk, Severodvinsk and Novodvinsk agglomeration for recreation, growing fruits and vegetables, picking wild berries and mushrooms, and short-term residence. In groundwater samples taken from wells, the average concentrations of heavy metals decrease in the following order: Fe > Mn > Zn > Cr > Ni > Cu > Ti > V > Pb > U > As > Co > Mo > Sb > Cd. A comparison of metal concentrations in groundwater with WHO and SanPiN standards showed that only Fe and Mn exceeded the permissible limits, for the rest of the studied metals, the concentrations were significantly below the permissible limits. The study of heavy metals in the snow showed a similar order of decrease in concentrations to groundwater and total concentrations of soluble metal fractions. This fact indicates the migration of heavy metals into groundwater after the spring snowmelt and the fact the main source of groundwater pollution is the atmospheric channel. According to the values of the total areal pollution of the snow cover with heavy metals, the most polluted are suburban garden plots in the area of the Arkhangelsk city – 216.91 mg/m2. The results of the principal component analysis showed that the main sources of snow cover pollution with heavy metals in the suburban areas of the Arkhangelsk agglomeration were thermal power plants, machine-building and metallurgical plants, a solid waste landfill, and vehicles. The calculation of the heavy metal pollution index for water did not reveal a significant anthropogenic impact. However, the indices assessing the amount of metals (heavy metal evaluation index), toxicity (heavy metal toxicity load), non-carcinogenic risk (hazard index), and carcinogenic risk indicate a high level of heavy metal pollution of the studied waters, as well as the unsuitability of groundwater and melted snow as drinking water. Metals such as Fe, Mn, Ni, Cu, and Pb make the greatest contribution to the quality indices of the studied waters.

Keywords


Abiriga D., Vestgarden L. аnd Klempe H. (2020). Groundwater contamination from a municipal landfill: Effect of age, landfill closure, and season on groundwater chemistry. Sci. Total Environ.; 737.
Adelagun R.O., Etim E.E. аnd Godwin O.E. (2021). Application of Water Quality Index for the Assessment of Water from Different Sources in Nigeria. Promising Techniques for Wastewater Treatment and Water Quality Assessment; 267-286.
Alidadi H., Sany B., Oftadeh T. аnd Mohamad H. (2019). Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. 
Anufrieva A.F., Bezugla E.Yu., Zagainova M.S., Ivleva T.P., Lyubushkina T.N. аnd Smirnova I.V. (2021). The state of atmospheric pollution in cities in Russia for 2020, Roshydromet, St. Petersburg.
ATSDR (2019). Toxic substance portal: Toxicological profiles. Retrieved February 5.
Azimi S. (2004). Sources, flux et bilan des retombées atmosphériques de métaux en Ile-de-France (Doctoral dissertation, Ecole des Ponts ParisTech).
Bacardit, M. аnd Camarero, L. (2010). Atmospherically deposited major and trace elements in the winter snowpack along a gradient of altitude in the Central Pyrenees: The seasonal record of long-range fluxes over SW Europe. Atmospheric Environ., 44(4); 582-595. 
Beshentsev V. (2021). Manganese in groundwater formed under permafrost conditions. 9; 11. 
Borgmann U. (2000). Methods for assessing the toxicological significance of metals in aquatic ecosystems: bio-accumulation–toxicity relationships, water concentrations and sediment spiking approaches. Aquat Ecosyst Health Manag., 3; 277-289.
Boykova T. E. аnd Belozerova T. I. (2016). Research of soils of the city of Severodvinsk on the content of heavy metals. Modern high-tech technologies. Regional application, 4; 48. 
Byzova N. M., Preminina Ya. K., Alexandrova E. N. аnd Konovalova N. V. (2019). Geography of the Arkhangelsk region: a textbook for students of grades 8-9 of general education organizations; under the general editorship of E. V. Kudryashova ; FGAOU VO “Sev. (Arct.) feder. University named after M. V. Lomonosov”. Arkhangelsk, 263. 
Calvo A., Alves C., Castro A., Pont V. аnd Vicente A. (2013). Fraile Research on aerosol sources and chemical composition: past, current and emerging issues Atmos. Res., 120; 1-28.
Сeburnis D., Сakalys J., Armolaitis K, Valiulis D. аnd Kvietkus K. (2002). In-stack emissions of heavy metals estimated by moss biomonitoring method and snow-pack analysis. Atmospheric Environ., 36 (9); 1465-1474. 
Chagina, N. B., Aivazova, E. A., Ivanchenko, N. L., Varakin, E. A. аnd Sobolev, N. A. (2016). Heavy metals in snow cover of Arkhangelsk and evaluation of their influence on population health.  Vestnik Severnogo (Arkticheskogo) federalnogo universiteta. Ser.: Estestvennye nauki, 4; 57–68. 
Chen Z., Ding Y., Jiang X., Duan H., Ruan X., Li Z. аnd Li Y. (2022). Combination of UNMIX, PMF model and Pb-Zn-Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils, Ecotoxicol. Environ. Saf., 234; 113369. 
Cherednichenko V.S., Cherednichenko A.V., Cherednichenko A.V., Zheksenbaeva A.K. аnd Madibekov A.S. (2021). Heavy metal deposition through precipitation in Kazakhstan. 
Chizhevskaya M. V., Bagaeva O. I. аnd Mironova V. A. (2017). Review of chemical components that make up landfills of solid household waste. Technosphere safety; 125-127.
Dong Z.W., Kang S.C., Qin X.F., Li D.H. аnd Qin J.W. (2015). Ren New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China Sci. Total Environ., 529; 101-113.
Dvinskikh S. A. (2020) Factors of formation and elements of the chemical composition of surface waters: educational and methodological manual (Permian: Perm State National Research University).
Edet, A. аnd  Offiong, O. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 57; 295–304. 
Federal Law of 29.07.2017 (as amended on 22.12.2020) “On the conduct of gardening and gardening by citizens for Their Own Needs and on Amendments to Certain Legislative Acts of the Russian Federation.”
Filippelli G., Morrison D. аnd Cicchella D. (2012). Urban geochemistry and human health Elements, 8; 439-444.
Gabrielli P., Wegner A., Sierra-Hernandez M.R., Beaudon E., Davis M. аnd Barker J.D. (2020). Thompson Early atmospheric contamination on the top of the Himalayas since the onset of the European Industrial Revolution Proc. Natl. Acad. Sci. U. S. A., 117; 3967-3973.
Galfi H., Österlund H., Marsalek J. аnd Viklander M. (2016). Indicator bacteria and associated water quality constituents in stormwater and snowmelt from four urban catchments J. Hydrol., 539; 125-140. 
Gao Y., Yang C., Ma J. аnd Yin M. (2018). Characteristics of the trace elements and arsenic, iodine and bromine species in snow in east-central China, Atmospheric Environ., 174; 43-53. 
Gavriс S., Leonhardt G., Österlund H., Marsalek J. аnd Viklander M. (2021). Metal enrichment of soils in three urban drainage grass swales used for seasonal snow storage. Sci.  Total Environ., 760; 144136.
GOST 17.1.5.05–85 (1985). General requirements for sampling surface and sea waters, ice and atmospheric precipitation.
GOST 31864-2012 (2012). Drinking water. Method for determining the total specific alpha activity of radionuclides. Method for determination of summary specific radio-nuclei alpha-activity.
Grinfelde I., Pilecka-Ulcugaceva J., Bertins M., Viksna A., Rudovica V., Liepa S. аnd Burlakovs  J. (2021). Dataset of trace elements concentrations in snow samples collected in Jelgava City (Latvia) in December 2020. Data Brief, 38; 107300.
Haque A., Jewel A. S., Hasan J., Islam M., Ahmed S. аnd Alam L. (2019). Seasonal variation and ecological risk assessment of heavy metal contamination in surface waters of the Ganges river (northwestern Bangladesh). Malaysian J. Anal. Sci., 23(2); 300–311.
Hidemori T., Nakayama T., Matsumi Y., Kinugawa T., Yabushita A., Ohashi M., Miyoshi T. and Irei S. (2014). Characteristics of atmospheric aerosols containing heavy metals measured on Fukue Island, Japan. Atmospheric Environ., 97; 447-455.
Hu X., Zhang Y., Ding Z., Wang T., Lian H., Sun Y. аnd Wu J. (2012a). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing. China Atmos. Environ., 57; 146-152.
Hu Z., Shi Y., Niu H. аnd Cai Y. (2012b). Synthetic musk fragrances and heavy metals in snow samples of Beijing urban area, China. Atmospheric Research, 104–105.
Huang C., Bao L., Luo P., Wang Z., Li S. аnd Zeng E. (2016). Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals. J. Hazard. Mater., 317; 449-456.
Iqbal J. аnd Shah M. H. (2013). Health Risk Assessment of Metals in Surface Water from Freshwater Source Lakes, Pakistan. Human and Ecological Risk Assessment: An International Journal, 19(6), 1530-1543. 
Korobitsina Yu. S., Popova L. F., Vasilyeva A. I. аnd Usacheva T. V. (2013). Ecological assessment of heavy metal pollution of the soil cover of Severodvinsk. Scientific dialogue, 4; 48. 
Kumar, V., Daman Parihar, R., Sharma, A., Bakshi, P., Preet Singh Sidhu, G., Shreeya Bali, S., Karaouzas, I., Bhardwaj, R., Kumar Thukral, A., Gyasi-Agyei, Y. аnd Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236; 124364. 
Lei Y.D. аnd Wania F. (2004). Is rain or snow a more efficient scavenger of organic chemicals. Atmos. Environ., 38 (22); 3557-3571.
Li Y., Fu Q., Li T., Liu D., Hou R., Li Q., Yi J. аnd Li M. (2021). Fanxiang Meng, Snow melting water infiltration mechanism of farmland freezing-thawing soil and determination of meltwater infiltration parameter in seasonal frozen soil areas. Agric Water Manag, 258; 107165.
Luo X., Bing H., Luo Z., Wang Y. and Jin L. (2019). Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environ. Pollut., (1); 255.
Ma Y., Tang Y., Xu H., Zhang X., Liu H. аnd Wang S. (2019). Zhang Bulk/wet deposition of trace metals to rural, industrial, and urban areas in the Yangtze River Delta, China. Ecotox Environ. Safety, 169; 185-191.
Methods for measuring the volumetric activity of uranium isotopes (238U, 234U, 235U) in samples of natural (fresh and saline), process and waste waters by the alpha spectrometric method with radiochemical preparation. (2013). Moscow.
Mikhalina E. S. (2003). Investigation of the behavior of arsenic contained in technogenic and natural raw materials of ferrous metallurgy in order to assess the impact on the environment: Dis. Candidate of Technical Sciences: 05.16.07 : Moscow, 157 c.
Moghadas, S., Paus, K. H., Muthanna, T. M., Herrmann, I., Marsalek, J., and Viklander, M. (2015). Accumulation of traffic-related trace metals in urban winter-long roadside snowbanks. Water Air Soil Pollut., 226; 404. 
Mohammadi, A. A., Zarei, A., Majidi, S., Ghaderpoury, A., Hashempour, Y., Saghi, M. H., Alinejad, A., Yousefi, M., Hosseingholizadeh, N., and Ghaderpoori, M. (2019). Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. Methodsx, 6; 1642–1651. 
Moskovchenko D.V., Pozhitkov R.Yu. and Soromotin A.V. (2021). Geochemical characteristics of the snow cover of Tobolsk. Proceedings of Tomsk Polytechnic University. Georesource engineering, 5; 156-169.
Navas A. and Lindhorfer H. (2005). Chemical partitioning of Fe, Mn, Zn and Cr in mountain soils of the Iberian and Pyrenean ranges (NE Spain) Soil and Sediment Contamination. Int. J., 14; 249-259.
Naveedullah M., Hashmi Z., Yu C., Shen H., Duan D., Shen C., Lou L. and Chen Y. (2014). Concentrations and human health risk assessment of selected heavy metals in surface water of the siling reservoir watershed in Zhejiang province, China. Pol J Environ Stud, 23(3); 801-811.
Nefedova T., Polyan P. and Trayvish A. (2001). The main urban agglomerations of the European part of Russia. City and village in European Russia: one hundred years of change. Moscow, OGI; 558.
OEHHA (2020). California Office of Environmental Health Hazard Assessment. Technical Support Document for Cancer Potency Factors 2009, Appendix A: A lookup table containing unit risk and cancer potency values.
Opekunova M., Opekunov A., Elsukova E., Kukushkin S. and Janson S. (2021). Comparative analysis of methods for air pollution assessing in the Arctic mining area. Atmospheric Pollut. Res., 12, 1; 76-88. 
Osada K., Shido Y., Iida H. and Kido M. (2010). Deposition processes of ionic constituents to snow cover Atmos. Environ., 44; 347-353.
Oucher N., Kerbachi R., Ghezloun A., and Merabet H. (2015). Magnitude of Air Pollution by Heavy Metals Associated with Aerosols Particles in Algiers. Energy Procedia. 74; 51-58.
Palamodova L.A. (2021). The formation of snow cover in the city of Arkhangelsk according to observations of 2018 -2019. Bull. Magistr. 3, (2); 114. 
Pershina N.A., Polishchuk A.I., Pavlova M.T. and Semenets E.S. (2021). Annual data on chemical composition and acidity of precipitation. Roshydromet. – St. Petersburg: Amirit, 114. 
Perkhurova O.V. (2021). The state and environmental protection of the Arkhangelsk region for 2020. Arkhangelsk: SAFU. 478 с. 
Popova L. F. and Boos O. D. (2020). Assessment of atmospheric air pollution in Arkhangelsk. Young scientist. 49, 339; 488-490.
Pozhitkov R. Yu., Moskovchenko D. V. and Kudryavtsev A. A. (2018). Geochemistry of snow cover in Nizhnevartovsk. Bulletin of the Tyumen State University: Ecol. Nature Manag., 4(1), 6-24. 
Prasad B. and Bose J. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ. Geol., 41; 183-188. 
Qu L., Huang H., Xia F., Liu Y., Dahlgren R., Zhang M. and  Mei K. (2018). Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ. Pollut., 237; 639–649. 
Rоdland E. S., Lind O. C., Reid M. J., Heier L. S. and Okoffo E. D. (2022). Occurrence of tire and road wear particles in urban and peri-urban snowbanks, and their potential environmental implications. Sci. Total Environ., 824; 153785.
Rosca C., Schoenberg R., Tomlinson E. and Kamber B. (2019). Combined zinc-lead isotope and trace-metal assessment of recent atmospheric pollution sources recorded in Irish peatlands Sci. Total Environ., 658; 234-249.
Rybakov D. S. and Krutskikh N. V. (2021). Geoecological patterns of molybdenum and tungsten distribution during anthropogenic transformation of Prionezhye geosystems. Geogr. Bull., 1; 56. 
Saha P. and Paul B. (2018). Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Human and Ecological Risk Assessment. Int. J., 25(4); 966–987. 
SanPiN 2.1.4.1074-01 (2001) Drinking water. Hygienic requirements for water quality of centralized drinking water supply systems. Quality control. Sanitary and epidemiological rules and regulations (Moscow: Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia).
Sharova O.A. and Barmin A.N. (2013). Ecological monitoring at landfills of solid household and industrial waste.  Scientific Vedomosti BelSU. Ser. Natural sciences. 3 (22) 146; 166-170. 
Shiraiwa M., Ueda K., Pozzer A., Lammel G., Kampf C., Fushimi S., Enami A., Arangio J., Fröhlich-Nowoisky Y. and Fujitani A. (2017). Sato Aerosol health effects from molecular to global scales Environ. Sci. Technol., 51; 13545-13567
Singh A.S., Venkatesh T.H., Syed A.G., Reddy M.Р. and Kumar, R.M. (2017). Kurakalva Assessment of potentially toxic trace elements contamination in groundwater resources of the coal mining area of the Korba coalfield, Central India Environ. Earth Sci., 76; 566.
Siudek P., Frankowski M. and Siepak J. (2015). Trace element distribution in the snow cover from an urban area in central Poland. Environ. Monit. Assess., 187(5); 225. 
Slukovsky Z. I., Guzeva A.V., Grigoriev V. A., Dauvalter V. A. and Mitsukov A. S. (2020). Paleolimnological reconstruction of technogenic impact on the ecosystem of Lake Bolshoy Vudyar (Kirovsk, Murmansk region, Arctic): new geochemical data. Ecol. Urban. Territor. 
Stepanova N.V., Fomina S.F., Valeeva E.R. and Ziyatdinova A.I. (2018). Heavy metals as criteria of health and ecological well-being of the urban environment. J Trace Elem in Med  Biol, 50; 646-651. 
Suvarapu L.N. and Baek S.O. (2017). Determination of heavy metals in the ambient atmosphere: a review Toxicol. Ind. Health, 33; 79-96
Szynkowska M.I., Pawlaczyk A. and Maćkiewicz E. (2018). Bioaccumulation and biomagnification of trace elements in the environment K. Chojnacka, A. Saeid (Eds.). Recent Adv. Trace Elem., 249-251.
Taka M., Sillanpää N., Niemi T., Warsta L., Kokkonen T. and Setälä H. (2022). Heavy metals from heavy land use? Spatio-temporal patterns of urban runoff metal loads. Sci. Total Environ., 817; 152855.
Talovskaya, A. V., Yazikov, E. G., Filimonenko, E. A., Lata, J. C., Kim, J., and Shakhova, T. S. (2018). Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia). Environ. Technol., 39; 2288–2303. 
Truchet D., Buzzi N., Negro C. and Mora M. (2020). Marcovecchio  Integrative assessment of the ecological risk of heavy metals in a South American estuary under human pressures Ecotoxicol. Environ. Saf., 208.
USEPA (2004). Risk assessment guidance for superfund. Volume 1: Human health evaluation manual (Part E, Supplemental guidance for dermal risk assessment). Washington, USA.
Vasilevich M.I., Vasilevich R.S., Gabov D.N. and Kondratenok B.M. (2019). Evaluation of aerial technogenic pollution near industrial enterprises in the tundra zone (by the example of Vorkuta city). Geoecol. Engineer. geol. Hydrogeol. Geocryol., 6; 94-105.  
Veysseyre A., Moutard K., Ferrari C., Van K., Barbante C., Cozzi G., Capodaglio G. and Boutron C. (2001). Heavy metals in fresh snow collected at different altitudes in the Chamonix and Maurienne valleys, French Alps: initial results. Atmospheric Environ., 35 (2); 415-425. 
Viklander M. (1994). Melting of Urban Snow Deposits A Water Quality Study. Division of Sanitary Engineering LuleaUniversity of Technology, S-971 87 Sweden.
Vladimirov S.A. and Karchevsky A.O. (2005). Ecological and landscape monitoring of landfills of solid household waste in the Republic of Adygea. Kuban State Agrarian University. Scientific electronic journal of KubGAU. 5; 13.
Vlasov D., Vasilchuk J., Kosheleva N. and Kasimov N. (2020). Dissolved and Suspended Forms of Metals and Metalloids in Snow Cover of Megacity: Partitioning and Deposition Rates in Western Moscow. Atmosphere, 11(9); 907. 
Wanda E. M., Gulula L. C. and Phiri G. (2012). Determination of characteristics and drinking water quality index in Mzuzu City, Northern Malawi. Phys Chem Earth, Parts A/B/C, 50; 92-97. 
Wang C., Jin H., Zhong C., Wang J., Sun M. and Xie M. (2020). Estimating the contribution of atmosphere on heavy metals accumulation in the aboveground wheat tissues induced by anthropogenic forcing. Environ. Res., 189.
Westerlund C., Viklander M. and Bäckström M. (2003). Seasonal variations in road runoff quality in Lulea, Sweden Water Sci. Technol., 48 (9), 93-101.
WHO, (2017). Guidelines for Drinking-water Quality, fourth ed. incorporating the first addendum. Geneva, Switzerland. 
Wu Y.S., Fang G.C., Lee W.J., Lee J.F., Chang C.C. and Lee C.Z. (2007). A review of atmospheric fine particulate matter and its associated trace metal pollutants in Asian countries during the period 1995-2005 J. Hazard Mater., 143; 511-515.
Wu B., Zhao D. Y., Jia H. Y., Zhang Y., Zhang X.X. and Cheng, S.P. (2009). Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull Environ Contam Toxicol, 82; 405–409. 
Xu Y., Li Q., Xie S., Zhang C., Yan F., Liu Y., Kang S., Gao S. and Li C. (2022). Overestimation of anthropogenic contribution of heavy metals in precipitation than those of aerosol samples due to different treatment methods. Environ. Pollut., 300.
Yakovlev E., Druzhinina A., Druzhinin S., Zykov S. and Ivanchenko N. (2021). Assessment of physical and chemical properties, health risk of trace metals and quality indices of surface waters of the rivers and lakes of the Kola Peninsula (Murmansk Region, North–West Russia). Environ Geochem Health. 
Zakir H. M., Sharmin S., Akter A. and Rahmana S. (2020). Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: a case study of Jamalpur Sadar area, Bangladesh. Environmental Advances, 100005. 
Zamotaev I.V., Ivanov I.V., Mikheev P.V. and Belobrov V.P. (2018). Assessment of the state of soils and vegetation in the areas of landfills and landfills of solid household waste (review). Soil Sci. 7; 907-924. 
Zeng D., Chen G., Zhou P., Xu H., Qiong A., Duo B., Lu X., Wang Z. and Han Z. (2021). Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau. Ecotoxicol. Environ. Saf., 211.
Zhang T., Xiao Y., Liang D., Tang H., Yuan S. and Luan B. (2020). Rainfall runoff and dissolved pollutant transport processes over idealized urban catchments Front. Earth Sci., 8; 305.
Zhou J., Du B., Liu H., Cui H., Zhang W., Fan X., Cui J. and Zhou J. (2020). The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L.). J. Hazard. Mater., 384; 121285.
Zhou J., Du B., Wang Z., Zhang W., Xu L., Fan X., Liu X. and Zhou J. (2019). Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects Sci. Total Environ., 647; 932-941.
Zhuravleva N.V., Ivanykina O.V. and Ismagilov Z.R. (2013). Studying the distribution of toxic elements in ash and slag waste of fuel and energy complex enterprises of the Kemerovo region. Chemistry in the interests of sustainable development. 21; 479-486.