Metals Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb in Aquatic Plants of Man-made Water Reservoir, Eastern Siberia, Russia: Tracking of Environment Pollution

Document Type : Original Research Paper

Authors

Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 1А Favorsky St., 664033, Irkutsk, Russia

10.22059/poll.2022.339248.1374

Abstract

The paper reports the results of research on the Bratsk water body (Russia), the hugest man-made reservoir in the world, using aquatic plants as bioindicators. This aquatic environment requires constant monitoring due to metal emissions by metallurgical, machine-building, and other industries. To that end, the accumulation capacities of Myriophyllum spicatum L., Elodea canadensis Michx., Potamogeton pectinatus L. and Cladophora glomerata L. were compared. The Ti, Cr, Mn, Fe, Ni, Cu, Zn, and, Pb contents in the plants were quantified with X-ray fluorescence. The calculated bioaccumulation indexes provided similar indicator characteristics of these species. The clustering analysis specified the spatial metal pollution in the reservoir. The aquatic plants sampled near industrial enterprises demonstrated the high concentrations: Ti (573-887), Cr (14-22), Mn (609-1080), Fe (9231-12724), Ni (8-11), Cu (51-103), Zn (35-45) and Pb (10-40) µg/g. The average concentrations in the samples collected away from emission sources were significantly lower: Ti (443-598), Cr (7-10), Mn (439-591), Fe (4575-6573), Ni (6-7), Cu (36-58), Zn (27-33) and Pb (6-9). While, they were several-fold higher than threshold values reported for the Lake Baikal plants: Ti – 6; Cr – 2-2.6; Ni – 1.9; Fe – 3-6.7; Mn – 1.5-2.6; Cu – 4; Zn – 1.2-2, and Pb – 7.3. In addition to industrial impacts, the sedimentation processes, coastal erosion, wood rotting and ore occurrences caused increasing in metal contents. Assessment of pollution through the pollution load index and the integration Nemerov index provided the classification of the environment of the Bratsk water reservoir as polluted one.

Keywords


Ahmad, S.S., Reshi, Z.A., Shah, M.A., Rashid, I., Ara, R. and Andrabi, S.M.A. (2016). Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications. Wetlands Ecol. Manage, 24; 469-475. doi 10.1007/s11273-015-9472-9
Azovsky, M.G., Pastukhov, M.V. and Grebenshikova, V.I. (2010). The level of mercury accumulation in aquatic plants as an indicator of water pollution. Water: Chem. Ecol., 8; 20-24 (In Russia).
Baldantoni, D.  and Alfani, A. (2016). Usefulness of different vascular plant species for passive biomonitoring of Mediterranean rivers. Environ. Sci. Pollut. Res., 23; 13907-13917. doi 10.1007/s11356-016-6592-6
Baldantoni, D., Bellino, A., Lofrano, G., Libralato, G., Pucci, L. and Carotenuto, M. (2018). Biomonitoring of nutrient and toxic element concentrations in the Sarno River through aquatic plants. Ecotoxicol. Environ. Saf., 148; 520-527. doi: 10.1016/j.ecoenv.2017.10.063 
Benhaddya, M.L., Halis, Y. and Lahcini, A. (2019). Concentration, distribution, and potential aquatic risk assessment of metals in water from Chott Merouane (Ramsar site), Algeria. Archives Environ. Contamination Toxicol., 77; 127-143. doi: 10.1007/s00244-019-00631-y
Bonanno, G., Borg, J.A. and Di Martino, V. (2017). Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: A comparative assessment. Sci. Total. Environ., 576; 796-806. doi: 10.1016/j.scitotenv.2016.10.171
Boyarkin, V.M.  and Boyarkin, I.V. (2011). Geography of the Irkutsk region (nature, population, agriculture, ecology). Sarma, Irkutsk (In Russia).
Catalogue of environmental certified reference materials (2013). SB RAS Institute of Geochemistry, Irkutsk, Russia. 
Cegłowska, A., Sokołowska, K., Samecka-Cymerman, A., Kolon, K., Jusik, S. and Kempers, A.J. (2016). Copper and zinc in Elodea canadensis from rivers with various pollution levels. Ecol Indicators, 67; 156-165. dx.doi.org/10.1016/j.ecolind.2016.02.047
Chuparina, E.V.and Azovsky, M.G. (2016). Elemental analysis of aquatic plants by X-ray fluorescence. Anal. Lett., 49(12); 1963-1973. doi: 10.1080/00032719.2015.1126838
Costa, M.B., Tavares, F.V., Martinez, C.B., Colares, I.G. and Gaspar Martins, C.M. (2018). Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation. Ecotoxicol. Environ. Saf., 155; 117-124. doi: 10.1016/j.ecoenv.2018.01.062
Favas, P.J.C.,  Pratas, J., Rodrigues, N., D’Souza, R., Varun, M. and Paul, M.S. (2018). Metal (loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere, 194; 158-170. doi.org/10.1016/j.chemosphere.2017.11.139
Genisel, M., Turk, H., Erdal, S., Sisman, T., Demir, Y., Kohnehshahri, S.M. and Kizilkaya, M. (2015). Changes in inorganic composition and accumulation of heavy metals in aquatic plants growing in the areas contaminated by cement factory. J. Environ. Prot. Ecol., 16(4); 1297-1306. 
Grachev, M.A. (2002). On recent state of ecological system of Lake Baikal. SB RAS, Novosibirsk (In Russia).
Hagger, J.A., Jones, M.B., Lowe, D., Leonard, D.R.P., Owen, R. and Galloway, T.S. (2008). Application of biomarkers for improving risk assessments of chemicals under the Water Framework Directive: A case study. Marine Pollut. Bulletin, 56; 1111-1118. doi:10.1016/j.marpolbul.2008.03.040
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res., 14(8); 975-1001. doi: 10.1016/0043-1354(80)90143-8
Karnaukhova, G.A. (1999). Geochemical composition of water and sediments of Bratsk water reservoir. Geochemistry, 1; 51-56 (In Russia).
Karnaukhova, G.A. (2008). Hydrochemistry of the Angara and reservoirs of the Angara cascade. Water Res., 35(1); 71-79. doi: 10.1134/S0097807808010089
Koval, P.V., Kalmychkov, G.V., Gelety, V.F., Leonova, G.A., Medvedev, V.I. and Andrulaitis, L.D. (1999). Correlation of natural and technogenic mercury sources in the Baikal polygon, Russia. J. Geochem. Explor., 66; 277-289.
Kozhova, O.M., Izhboldina, L.A., Rezchikov, V.I., Kornakova, E.F. and Gumenyuk, A.A. (1994). Element composition of macrophyte species of the Lake Baikal. Irkutsk, 22 p. deposited in VINITI 24.08.94, № 2108-В94 (In Russia). 
Kuskovskii, V.S., Ovchinnikov, G.I., Pavlov, S.K., Trzhtsinskii, Y.B., Orekhova, E.S. and  Kozyreva, E.A. (1999). Geological processes on the shores of large water reservoirs of Siberia. Geologiya i Geophysics, 40(1); 3-18 (In Russia).
Lomartire, S., Marques, J.C. and Goncalves, A.M.M. (2021). Biomarkers based tools to assess environmental and chemical stressors in aquatic systems. Ecol. Indicators, 122; 107207. doi: 10.1016/j.ecolind.2020.107207
Markert B (1992). Presence and significance of naturally occurring chemical elements of periodic system in the plant organism and consequences for future investigations on inorganic environmental chemistry in ecosystems. Vegetatio, 103(1); 1-30.  
Manasypov, R.M., Pokrovsky, O.S., Shirokova, L.S., Kirpotin, S.N. and Zinner, N.S. (2018). Elemental composition of macrophytes of thermokarst lakes in Western Siberia. Bull. Tomsk Polytech. University. Geo Assets Eng,, 329(8); 50-65. 
Narayan, A., Mora, A., Sánchez, L. and Rosales, J. (2020). Temporal and spatial variability of heavy metals in bottom sediments and the aquatic macrophyte Paspalum repens of the Orinoco River floodplain lagoons impacted by industrial activities. Environ. Sci. Pollut. Res., 27; 37074–37086. doi.org/10.1007/s11356-020-09623-1
Pastukhov, M.V., Poletaeva, V.I. and Tirskikh, E.N. (2019).  Long-term dynamics of mercury pollution of the Bratsk reservoir bottom sediments, Baikal region, Russia. IOP Conference Series: Earth and Environ. Sci., 321(1); Paper number 012041. doi: 10.1088/1755-1315/321/1/012041
Perks, M.T., Warburton, J., Bracken, L.J., Reaney, S.M., Emery, S.B. and Hirst, S. (2017). Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management. J. Environ. Management, 202; 469-478. dx.doi.org/10.1016/j.jenvman.2017.01.045
Perrot, V., Epov, V.N., Pastukhov, M.V., Grebenshchikova, V.I., Zouiten, C., Sonke, J.E., Husted, S., Donard, O.F.X. and Amouroux, D. (2010). Tracing sources and bioaccumulation of mercury in fish of Lake Baikal & Angara River using Hg isotopic composition. Environ. Sci. Tech., 44(21); 8030–8037. doi.org/10.1021/es101898e
Pham, T.L. (2017). Comparison between water quality index (WQI) and biological indices, based on planktonic diatom for water quality assessment in the Dong Nai River, Vietnam. Pollution, 3(2); 311-323. doi: 10.7508/pj.2017.02. 012  
Polechońska, L., Klink, A., Dambiec, M. and Rudecki, A. (2018). Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecol. Indicators, 93; 274-281. doi.org/10.1016/j.ecolind.2018.05.020
Polechońska, L. and Klink, A. (2021). Validation of Hydrocharis morsus-ranae as a possible bioindicator of trace element pollution in freshwaters using Ceratophyllum demersum
as a reference species. Environ. Pollut., 269; 116145. doi: 10.1016/j.envpol.2020.116145
Poletaeva, V.I., Pastukhov, M.V., Zagorulko, N.A. and Belogolova, G.A. (2018). Changes in water hydrochemistry in bays of the Bratsk reservoir caused by forest harvesting operations. Water Res., 45(3); 369-378. doi: 10.1134/S0097807818030119 
Poletaeva, V.I., Pastukhov, M.V. and Tirskikh, E.N. (2021). Dynamics of trace element composition of Bratsk reservoir water in different periods of anthropogenic impact (Baikal region, Russia). Archives Environ. Contam. Toxicol., 80(3); 531-545. doi: 10.1007/s00244-021-00819-1
Ruhela, M., Bhutiani, R., Ahamad, F. and Khanna, D. R. (2019). Impact of Hindon River Water on Selected Riparian Flora (Azadirachta Indica and Acacia Nilotica) with special Reference to Heavy Metals. Pollution, 5(4); 749-760. doi: 10.22059/poll.2019.275662.583
Schubert, B., Heininger, P., Keller, M., Claus, E. and Ricking, M. (2012). Monitoring of contaminants in suspended particulate matter as an alternative to sediments. Trends Anal. Chem., 36; 58-70. dx.doi.org/10.1016/j.trac.2012.04.003
State report (2016). About state and protection of Irkutsk region environment for 2015 year. Vremya stranstvii Publishing House, Irkutsk (In Russia).
Tomlinson, D.L., Wilson, J.G., Harris, C.R. and Jeffrey, D.W. (1980). Problems in assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33; 566-575. doi: 10.1007/BF02414780
Vetrov, V.A., Kuznetsova, A.I. and Sklyarova, O.A. (2013). Baseline levels of chemical elements in the water of Lake Baikal. Geography and Natural Resources, 3; 228-238 (In Russia).
Vladykin, N.V. and Alymova, N.V. (2019). The Zhidoy massif of ultrabasic-alkaline rocks and carbonatites: its geochemical features sources and ore potential. Proceedings of 15th International Workshop: Deep-seated magmatism, its sources and plumes. Publisher IGC SB RAS, Irkutsk-Simferopol (Russia), 96-109.  
Wang, Z., Yao, L., Liu, G. and Liu, W. (2014). Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Exotoxicol. Environ. Saf., 107; 200-206. doi: 10.1016/j.ecoenv.2014.06.002
Zhigzhitzhapova, S.V., Pavlov, I.A., Shiretorova, V.G., Dylenova, E.P., Radnaeva, L.D. and Tulokhonov, A.K. (2019). Metal contents in aquatic plants of Lake Gusinoe. Water: Chemistry and Ecology, 118(1-2); 34-40 (In Russia).